A selection of Hadoop Docker Images

Posted on

When it comes to big data platforms one of the biggest challenges is getting a test environment setup where you can try out the various components. There are a few approaches to doing this this. The first is to setup your own virtual machine or some other container with the software. But this can be challenging to get just a handful of big data applications/software to work on one machine.

But there is an alternative approach. You can use one of the preconfigured environments from the likes of AWS, Google, Azure, Oracle, etc. But in most cases these come with a cost. Maybe not in the beginning but after a little us you will need to start handing over some dollars. But these require you to have access to the cloud i.e. wifi, to run these. Again not always possible!

So what if you want to have a local big data and Hadoop environment on your own PC or laptop or in your home or office test lab? There ware a lot of Virtual Machines available. But most of these have a sizeable hardware requirement. Particularly for memory, with many requiring 16+G of RAM ! Although in more recent times this might not be a problem but for many it still is. Your machines do not have that amount or your machine doesn’t allow you to upgrade.

What can you do?

Have you considered using Docker? There are many different Hadoop Docker images available and these are not as resource or hardware hungry, unlike the Virtual Machines.

Here is a list of some that I’ve tried out and you might find them useful.

Cloudera QuickStart image

You may have tried their VM, now go dry the Cloudera QuickStart docker image.

Read about it here.

Check our Docker Hub for lots and lots of images.

Docker Hub is not the only place to get Hadoop Docker images. There are lots on GitHub
Just do a quick Google search to find the many, many, many images.

These Docker Hadoop images are a great way for you to try out these Big Data platforms and environments with the minimum of resources.



Spark versus Flink

Posted on

Spark is an open source Apache project that provides a framework for multi stage in-memory analytics. Spark is based on the Hadoop platform and can interface with Cassandra OpenStack Swift, Amazon S3, Kudu and HDFS. Spark comes with a suite of analytic and machine learning algorithm allowing you to perform a wide variety of analytics on you distribute Hadoop platform. This allows you to generate data insights, data enrichment and data aggregations for storage on Hadoop and to be used on other more main stream analytics as part of your traditional infrastructure. Spark is primarily aimed at batch type analytics but it does come with a capabilities for streaming data. When data needs to be analysed it is loaded into memory and the results are then written back to Hadoop.


Flink is another open source Apache project that provides a platform for analyzing and processing data that is in a distributed stream and/or batch data processing. Similarly to Spark, Flink comes with a set of APIs that allows for each integration in with Java, Scala and Python. The machine learning algorithms have been specifically tuned to work with streaming data specifically but can also work in batch oriented data. As Flink is focused on being able to process streaming data, it run on Yarn, works with HDFS, can be easily integrated with Kafka and can connect to various other data storage systems.


Although both Spark and Flink can process streaming data, when you examine the underlying architecture of these tools you will find that Flink is more specifically focused for streaming data and can process this data in a more efficient manner.

There has been some suggestions in recent weeks and months that Spark is now long the tool of choice for analytics on Hadoop. Instead everyone should be using Flink or something else. Perhaps it is too early to say this. You need to consider the number of companies that have invested significant amount of time and resources building and releasing products on top of Spark. These two products provide similar-ish functionality but each product are designed to process this data in a different manner. So it really depends on what kind of data you need to process, if it is bulk or streaming will determine which of these products you should use. In some environments it may be suitable to use both.

Will these tool replace the more traditional advanced analytics tools in organisations? the simple answer is No they won’t replace them. Instead they will complement each other and if you have a Hadoop environment you will will probably end up using Spark to process the data on Hadoop. All other advanced analytics that are part of your more traditional environments you will use the traditional advanced analytics tools from the more main stream vendors.