ORE

R (ROracle) and Oracle DATE formats

Posted on Updated on

When you comes to working with R to access and process your data there are a number of little features and behaviors you need to look out for.

One of these is the DATE datatype.

The main issue that you have to look for is the TIMEZONE conversion that happens then you extract the data from the database into your R environment.

There is a datatype conversions from the Oracle DATE into the POSIXct format. The POSIXct datatype also includes the timezone. But the Oracle DATE datatype does not have a Timezone part of it.

When you look into this a bit more you will see that the main issue is what Timezone your R session has. By default your R session will inherit the OS session timezone. For me here in Ireland we have the time timezone as the UK. You would time that the timezone would therefore be GMT. But this is not the case. What we have for timezone is BST (or British Standard Time) and this takes into account the day light savings time. So on the 26th May, BST is one hour ahead of GMT.

OK. Let’s have a look at a sample scenario.

The Problem

As mentioned above, when I select date of type DATE from Oracle into R, using ROracle, I end up getting a different date value than what was in the database. Similarly when I process and store the data.

The following outlines the data setup and some of the R code that was used to generate the issue/problem.

Data Set-up
Create a table that contains a DATE field and insert some records.

CREATE TABLE STAFF
(STAFF_NUMBER VARCHAR2(20),
FIRST_NAME VARCHAR2(20),
SURNAME VARCHAR2(20),
DOB DATE,
PROG_CODE VARCHAR2(6 BYTE),
PRIMARY KEY (STAFF_NUMBER));

insert into staff values (123456789, 'Brendan', 'Tierney', to_date('01/06/1975', 'DD/MM/YYYY'), 'DEPT_1');
insert into staff values (234567890, 'Sean', 'Reilly', to_date('21/10/1980', 'DD/MM/YYYY'), 'DEPT_2');
insert into staff values (345678901, 'John', 'Smith', to_date('12/03/1973', 'DD/MM/YYYY'), 'DEPT_3');
insert into staff values (456789012, 'Barry', 'Connolly', to_date('25/01/1970', 'DD/MM/YYYY'), 'DEPT_4');

You can query this data in SQL without any problems. As you can see there is no timezone element to these dates.

Selecting the data
I now establish my connection to my schema in my 12c database using ROracle. I won’t bore you with the details here of how to do it but check out point 3 on this post for some details.

When I select the data I get the following.

> res<-dbSendQuery(con, "select * from staff")
> data <- fetch(res)
> data$DOB
[1] "1975-06-01 01:00:00 BST" "1980-10-21 01:00:00 BST" "1973-03-12 00:00:00 BST"
[4] "1970-01-25 01:00:00 BST"

As you can see two things have happened to my date data when it has been extracted from Oracle. Firstly it has assigned a timezone to the data, even though there was no timezone part of the original data. Secondly it has performed some sort of timezone conversion to from GMT to BST. The difference between GMT and BTS is the day light savings time. Hence the 01:00:00 being added to the time element that was extract. This time should have been 00:00:00. You can see we have a mixture of times!

So there appears to be some difference between the R date or timezone to what is being used in Oracle.

To add to this problem I was playing around with some dates and different records. I kept on getting this scenario but I also got the following, where we have a mixture of GMT and BST times and timezones. I’m not sure why we would get this mixture.

> data$DOB
[1] "1995-01-19 00:00:00 GMT" "1965-06-20 01:00:00 BST" "1973-10-20 01:00:00 BST"
[4] "2000-12-28 00:00:00 GMT"

This is all a bit confusing and annoying. So let us look at how you can now fix this.

The Solution

Fixing the problem : Setting Session variables
What you have to do to fix this and to ensure that there is consistency between that is in Oracle and what is read out and converted into R (POSIXct) format, you need to define two R session variables. These session variables are used to ensure the consistency in the date and time conversions.

These session variables are TZ for the R session timezone setting and Oracle ORA_SDTZ setting for specifying the timezone to be used for your Oracle connections.

The trick there is that these session variables need to be set before you create your ROracle connection. The following is the R code to set these session variables.

> Sys.setenv(TZ = "GMT")

> Sys.setenv(ORA_SDTZ = "GMT")

So you really need to have some knowledge of what kind of Dates you are working with in the database and if a timezone if part of it or is important. Alternatively you could set the above variables to UDT.

Selecting the data (correctly this time)
Now when we select our data from our table in our schema we now get the following, after reconnecting or creating a new connection to your Oracle schema.

> data$DOB

[1] "1975-06-01 GMT" "1980-10-21 GMT" "1973-03-12 GMT" "1970-01-25 GMT"

Now you can see we do not have any time element to the dates and this is correct in this example. So all is good.

We can now update the data and do whatever processing we want with the data in our R script.

But what happens when we save the data back to our Oracle schema. In the following R code we will add 2 days to the DOB attribute and then create a new table in our schema to save the updated data.

> data$DOB

[1] "1975-06-01 GMT" "1980-10-21 GMT" "1973-03-12 GMT" "1970-01-25 GMT"

> data$DOB <- data$DOB + days(2)
> data$DOB
[1] "1975-06-03 GMT" "1980-10-23 GMT" "1973-03-14 GMT" "1970-01-27 GMT"

 

> dbWriteTable(con, "STAFF_2", data, overwrite = TRUE, row.names = FALSE)
[1] TRUE

I’ve used the R package Libridate to do the date and time processing.

When we look at this newly created table in our Oracle schema we will see that we don’t have DATA datatype for DOB, but instead it is created using a TIMESTAMP data type.

If you are working with TIMESTAMP etc type of data types (i.e. data types that have a timezone element that is part of it) then that is a slightly different problem.

Managing memory allocation for Oracle R Enterprise Embedded Execution

Posted on

When working with Oracle R Enterprise and particularly when you are using the ORE functions that can spawn multiple R processes, on the DB Server, you need to be very aware of the amount of memory that will be consumed for each call of the ORE function.

ORE has two sets of parallel functions for running your user defined R scripts stored in the database, as part of the Embedded R Execution feature of ORE. The R functions are called ore.groupApply, ore.rowApply and ore.indexApply. When using SQL there are “rqGroupApply” and rqRowApply. (There is no SQL function equivalent of the R function ore.indexApply)

For each parallel R process that is spawned on the DB server a certain amount of memory (RAM) will be allocated to this R process. The default size of memory to be allocated can be found by using the following query.

select name, value from sys.rq_config;

NAME                                VALUE
----------------------------------- -----------------------------------
VERSION                             1.5
MIN_VSIZE                           32M
MAX_VSIZE                           4G
MIN_NSIZE                           2M
MAX_NSIZE                           20M

The memory allocation is broken out into the amount of memory allocated for Cells and NCells for each R process.

If your parallel ORE function create a large number of parallel R processes then you can see that the amount of overall memory consumed can be significant. I’ve seen a few customers who very quickly run out of memory on their DB servers. Now that is something you do not want to happen.

How can you prevent this from happening ?

There are a few things you need to keep in mind when using the parallel enabled ORE functions. The first one is, how many R processes will be spawned. For most cases this can be estimated or calculated to a high degree of accuracy. Secondly, how much memory will be used to process each of the R processes. Thirdly, how memory do you have available on the DB server. Fourthly, how many other people will be running parallel R processes at the same time?

Examining and answering each of these may look to be a relatively trivial task, but the complexity behind these can increase dramatically depending on the answer to the fourth point/question above.

To calculate the amount of memory used during the ORE user defined R script, you can use the R garbage function to calculate the memory usage at the start and at the end of the R script, and then return the calculated amount. Yes you need to add this extra code to your R script and then remove it when you have calculated the memory usage.

gc.start <- gc(reset=TRUE)
...
gc.end <- gc()
gc.used <- gc.end[,7] - gc.start[,7] # amount consumed by the processing

Using this information and the answers to the points/questions I listed above you can now look at calculating how much memory you need to allocated to the R processes. You can set this to be static for all R processes or you can use some code to allocate the amount of memory that is needed for each R process. But this starts to become messy. The following gives some examples (using R) of changing the R memory allocations in the Oracle Database. Similar commands can be issued using SQL.

> sys.rqconfigset('MIN_VSIZE', '10M') -- min heap 10MB, default 32MB
> sys.rqconfigset('MAX_VSIZE', '100M') -- max heap 100MB, default 4GB
> sys.rqconfigset('MIN_NSIZE', '500K') -- min number cons cells 500x1024, default 1M
> sys.rqconfigset('MAX_NSIZE', '2M') -- max number cons cells 2M, default 20M

Some guidelines – as with all guidelines you have to consider all the other requirements for the Database, and in reality you will have to try to find a balance between what is listed here and what is actually possible.

  • Set parallel_degree_policy to MANUAL.
  • Set parallel_min_servers to the number of parallel slave processes to be started when the database instances start, this avoids start up time for the R processes. This is not a problem for long running processes. But can save time with processes running for 10s seconds
  • To avoid overloading the CPUs if the parallel_max_servers limit is reached, set the hidden parameter _parallel_statement_queuing to TRUE. Avoids overloading and lets processes wait.
  • Set application tables and their indexes to DOP 1 to reinforce the ability of ORE to determine when to use parallelism.

Understanding the memory requirements for your ORE processes can be tricky business and can take some time to work out the right balance between what is needed by the spawned parallel R processes and everything else that is going on in the Database. There will be a lot of trial and error in working this out and it is always good to reach out for some help. If you have a similar scenario and need some help or guidance let me know.

OUG Ireland 2017 Presentation

Posted on

Here are the slides from my presentation at OUG Ireland 2017. All about running R using SQL.

Formatting results from ORE script in a SELECT statement

Posted on

This blog post looks at how to format the output or the returned returns from an Oracle R Enterprise (ORE), user defined R function, that is run using a SELECT statement in SQL.

Sometimes this can be a bit of a challenge to work out, but it can be relatively easy once you have figured out how to do it. The following examples works through some scenarios of different results sets from a user defined R function that is stored in the Oracle Database.

To run that user defined R function using a SELECT statement I can use one of the following ORE SQL functions.

  • rqEval
  • rqTableEval
  • rqGroupEval
  • rqRowEval

For simplicity we will just use the first of these ORE SQL functions to illustrate the problem and how to go about solving it. The rqEval ORE SQL function is a generate purpose function to call a user defined R script stored in the database. The function does not require any input data set and but it will return some data. You could use this to generate some dummy/test data or to find some information in the database. Here is noddy example that returns my name.

BEGIN
   --sys.rqScriptDrop('GET_NAME');
   sys.rqScriptCreate('GET_NAME',
      'function() {
         res<-data.frame("Brendan")
         res
         } ');
END;

To call this user defined R function I can use the following SQL.

select *
from table(rqEval(null,
                  'select cast(''a'' as varchar2(50))  from dual',
                  'GET_NAME') );  

For text strings returned you need to cast the returned value giving a size.

If we have a numeric value being returned we can don’t have to use the cast and instead use ‘1’ as shown in the following example. This second example extends our user defined R function to return my name and a number.

BEGIN
   sys.rqScriptDrop('GET_NAME');
   sys.rqScriptCreate('GET_NAME',
      'function() {
         res<-data.frame(NAME="Brendan", YEAR=2017)
         res
         } ');
END;

To call the updated GET_NAME function we now have to process two returned columns. The first is the character string and the second is a numeric.

select *
from table(rqEval(null,
                  'select cast(''a'' as varchar2(50)) as "NAME", 1 AS YEAR  from dual',
                  'GET_NAME') );                  

These example illustrate how you can process character strings and numerics being returned by the user defined R script.

The key to setting up the format of the returned values is knowing the structure of the data frame being returned by the user defined R script. Once you know that the rest is (in theory) easy.

How to get ORE to work with APEX

Posted on Updated on

This blog post will bring you through the steps of how to get Oracle R Enterprise (ORE) to work with APEX.

The reason for this blog posts is that since ORE 1.4+ the security model has changed for how you access and run in-database user defined R scripts using the ORE SQL API functions.

I have a series of blog posts going out on using Oracle Text, Oracle R Enterprise and Oracle Data Mining. It was during one of these posts I wanted to show how easy it was to display an R chart using ORE in APEX. Up to now my APEX environment consisted of APEX 4 and ORE 1.3. Everything worked, nice and easy. But in my new APEX environment (APEX 5 and ORE 1.5), it didn’t work. This is the calling of an in-database user defined R script using the SQL API functions didn’t work. Here is the error message that is displayed.

NewImage

So something extra was needed with using ORE 1.5. The security model around the use of in-database user defined R scripts has changed. Extra functions are now available to allow you who can run these scripts. For example we have an ore.grant function where you can grant another user the privilege to run the script.

But the problem was, when I was in APEX, the application was defined on the same schema that the r script was created in (this was the RQUSER schema). When I connect to the RQUSER schema using ORE and SQL, I was able to see and run this R script (see my previous blog post for these details). But when I was in APEX I wasn’t able to see the R script. For example, when using the SQL Workshop in APEX, I just couldn’t see the R script.

NewImage

Something strange is going on. It turns out that the view definitions for the in-database ORE scripts are defined with

owner=SYS_CONTEXT('USERENV', 'SESSION_USER');

(Thanks to the Oracle ORE team and the Oracle APEX team for their help in working out what needed to be done)

This means when I’m connected to APEX, using my schema (RQUSER), I’m not able to see any of my ORE objects.

How do you overcome this problem ?

To fix this problem, I needed to grant the APEX_PUBLIC_USER access to my ORE script.

ore.grant(name = "prepare_tm_data_2", type = "rqscript", user = "APEX_PUBLIC_USER")

Now when I query the ALL_RQ_SCRIPTS view again, using the APEX SQL Workshop, I now get the following.

NewImage

Great. Now I can see the ORE script in my schema.

Now when I run my APEX application I now get graphic produced by R, running on my DB server, and delivered to my APEX application using SQL (via a BLOB object), displayed on my screen.

NewImage

Oracle Text, Oracle R Enterprise and Oracle Data Mining – Part 3

Posted on

This is the third blog post of a series on using Oracle Text, Oracle R Enterprise and Oracle Data Mining. Check out the first and second blog posts of the series, as the data used in this blog post was extracted, processed and stored in a databases table.

This blog post is divided into 3 parts. The first part will build on what was covered in in the previous blog post and will expand the in-database ORE R script to include more data processing. The second part of this blog post will look at how you can use SQL to call our in-database ORE R scripts and to be able to include it in our custom applications, for example using APEX (part 3).

Part 1 – Expanding our in-database ORE R script for Text Mining

In my previous blog post we created an ORE user defined R script, that is stored in the database, and this script was used to perform text mining and to create a word cloud. But the data/text to be mined was processed beforehand and passed into this procedure.

But what if we wanted to have a scenario where we just wanted to say, here is the table that contains the data. Go ahead and process it. To do this we need to expand our user defined R script to include the loop to merge the webpage text into one variable. The following is a new version of our ORE user defined R script.

> ore.scriptCreate("prepare_tm_data_2", function (local_data) { 
  library(tm)
  library(SnowballC)
  library(wordcloud)
  
  tm_data <-""
  for(i in 1:nrow(local_data)) {
    tm_data <- paste(tm_data, local_data[i,]$DOC_TEXT, sep=" ")
  }
    
  txt_corpus <- Corpus (VectorSource (tm_data))
  
  # data clean up
  tm_map <- tm_map (txt_corpus, stripWhitespace) # remove white space
  tm_map <- tm_map (tm_map, removePunctuation) # remove punctuations
  tm_map <- tm_map (tm_map, removeNumbers) # to remove numbers
  tm_map <- tm_map (tm_map, removeWords, stopwords("english")) # to remove stop words
  tm_map <- tm_map (tm_map, removeWords, c("work", "use", "java", "new", "support"))

  # prepare matrix of words and frequency counts
  Matrix <- TermDocumentMatrix(tm_map) # terms in rows
  matrix_c <- as.matrix (Matrix)
  freq <- sort (rowSums (matrix_c)) # frequency data
  
  res <- data.frame(words=names(freq), freq)
  wordcloud (res$words, res$freq, max.words=100, min.freq=3, scale=c(7,.5), random.order=FALSE, colors=brewer.pal(8, "Dark2"))
} ) 

To call this R scipts using the embedded R execution we can use the ore.tableApply function. Our parameter to our new R script will now be an ORE data frame. This can be a table in the database or we can create a subset of table and pass it as the parameter. This will mean all the data process will occur on the Oracle Database server. No data is passed to the client or processing performed on the client. All work is done on the database server. The only data that is passed back to the client is the result from the function and that is the word cloud image.

> res  res

Part 2 – Using SQL to perform R Text Mining

Another way you ccan call this ORE user defined R function is using SQL. Yes we can use SQL to call R code and to produce an R graphic. Then doing this the R graphic will be returned as a BLOB. So that makes it easy to view and to include in your applications, just like APEX.

To call our ORE user defined R function, we can use the rqTableEval SQL function. You only really need to set two of the parameters to this function. The first parameter is a SELECT statement the defines the data set to be passed to the function. This is similar to what I showed above using the ore.tableApply R function, except we can have easier control on what records to pass in as the data set. The fourth parameter gives the name of the ORE user defined R script.

select *
from table(rqTableEval( cursor(select * from MY_DOCUMENTS),
                        null,
                        'PNG',
                        'prepare_tm_data_2'));

This is the image that is produced by this SQL statement and viewed in SQL Developer.

NewImage

Part 3 – Adding our R Text Mining to APEX

Adding the SQL to call an ORE user defined script is very simple in APEX. You can create a form or a report based on a query, and this query can be the same query that is given above.

Something that I like to do is to create a view for the ORE SELECT statement. This gives me some flexibility with some potential future modifications. This could be as simple as just changing the name of the script. Also if I discover a new graphic that I want to use, all I need to do is to change the R code in my user defined R script and it will automatically be picked up and displayed in APEX. See the images below.

WARNING: Yes I do have a slight warning. Since the introduction of ORE 1.4 and higher there is a slightly different security model around the use of user defined R scripts. Instead of going into the details of this and what you need to do in this blog post, I will have a separate blog post that describes the behaviour and what you need to do allow APEX to use ORE and to call the user defined R scripts in your schema. So look out for this blog post coming really soon.

NewImage

In this blog post I showed you how you use Oracle R Enterprise and the embedded R execution features of ORE to use the text from the webpages and to create a word cloud. This is a useful tool to be able to see visually what words can stand out most on your webpage and if the correct message is being put across to your customers.

Oracle Text, Oracle R Enterprise and Oracle Data Mining – Part 1

Posted on

A project that I’ve been working on for a while now involves the use of Oracle Text, Oracle R Enterprise and Oracle Data Mining. Oracle Text comes with your Oracle Database licence. Oracle R Enterprise and Oracle Data Mining are part of the Oracle Advanced Analytics (extra cost) option.

What I will be doing over the course of 4 or maybe 5 blog posts is how these products can work together to help you gain a grater insight into your data, and part of your data being large text items like free format text, documents (in various forms e.g. html, xml, pdf, ms word), etc.

Unfortunately I cannot show you examples from the actual project I’ve been working on (and still am, from time to time). But what I can do is to show you how products and components can work together.

In this blog post I will just do some data setup. As with all project scenarios there can be many ways of performing the same tasks. Some might be better than others. But what I will be showing you is for demonstration purposes.

The scenario: The scenario for this blog post is that I want to extract text from some webpages and store them in a table in my schema. I then want to use Oracle Text to search the text from these webpages.

Schema setup: We need to create a table that will store the text from the webpages. We also want to create an Oracle Text index so that this text is searchable.

drop sequence my_doc_seq;
create sequence my_doc_seq;

drop table my_documents;

create table my_documents (
doc_pk number(10) primary key, 
doc_title varchar2(100), 
doc_extracted date, 
data_source varchar2(200), 
doc_text clob);

create index my_documents_ot_idx on my_documents(doc_text) 
indextype is CTXSYS.CONTEXT;

In the table we have a number of descriptive attributes and then a club for storing the website text. We will only be storing the website text and not the html document (More on that later). In order to make the website text searchable in the DOC_TEXT attribute we need to create an Oracle Text index of type CONTEXT.

There are a few challenges with using this type of index. For example when you insert a new record or update the DOC_TEXT attribute, the new values/text will not be reflected instantly, just like we are use to with traditional indexes. Instead you have to decide when you want to index to be updated. For example, if you would like the index to be updated after each commit then you can create the index using the following.

create index my_documents_ot_idx on my_documents(doc_text) 
indextype is CTXSYS.CONTEXT
parameters ('sync (on commit)');

Depending on the number of documents you have being committed to the DB, this might not be for you. You need to find the balance. Alternatively you could schedule the index to be updated by passing an interval to the ‘sync’ in the above command. Alternatively you might want to use DBMS_JOB to schedule the update.

To manually sync (or via DBMS_JOB) the index, assuming we used the first ‘create index’ statement, we would need to run the following.

EXEC CTX_DDL.SYNC_INDEX('my_documents_ot_idx');

This function just adds the new documents to the index. This can, over time, lead to some fragmentation of the index, and will require it to the re-organised on a semi-regular basis. Perhaps you can schedule this to happen every night, or once a week, or whatever makes sense to you.

BEGIN
  CTX_DDL.OPTIMIZE_INDEX('my_documents_ot_idx','FULL');
END;

(I could talk a lot more about setting up some basics of Oracle Text, the indexes, etc. But I’ll leave that for another day or you can read some of the many blog posts that already exist on the topic.)

Extracting text from a webpage using R: Some time ago I wrote a blog post on using some of the text mining features and packages in R to produce a word cloud based on some of the Oracle Advanced Analytics webpages.

I’m going to use the same webpages and some of the same code/functions/packages here.

The first task you need to do is to get your hands on the ‘htmlToText function. You can download the htmlToText function on github. This function requires the ‘Curl’ and ‘XML’ R packages. So you may need to install these.

I also use the str_replace_all function (“stringer’ R package) to remove some of the html that remains, to remove some special quotes and to replace and occurrences of ‘&’ with ‘and’.

# Load the function and required R packages
source(“c:/app/htmltotext.R”)
library(stringr)

data1 <- str_replace_all(htmlToText("http://www.oracle.com/technetwork/database/options/advanced-analytics/overview/index.html"), "[\r\n\t\"\'\u201C\u201D]" , "")
data1 <- str_replace_all(data1, "&", "and")
data2 <- str_replace_all(str_replace_all(htmlToText("http://www.oracle.com/technetwork/database/options/advanced-analytics/odm/index.html"), "[\r\n\t\"\'\u201C\u201D]" , ""), "&", "and")
data2 <- str_replace_all(data2, "&", "and")
data3 <- str_replace_all(str_replace_all(htmlToText("http://www.oracle.com/technetwork/database/database-technologies/r/r-technologies/overview/index.html"), "[\r\n\t\"\'\u201C\u201D]" , ""), "&", "and")
data3 <- str_replace_all(data3, "&", "and")
data4 <- str_replace_all(str_replace_all(htmlToText("http://www.oracle.com/technetwork/database/database-technologies/r/r-enterprise/overview/index.html"), "[\r\n\t\"\'\u201C\u201D]" , ""), "&", "and")
data4 <- str_replace_all(data4, "&", "and")

We now have the text extracted and cleaned up.

Create a data frame to contain all our data: Now that we have the text extracted, we can prepare the other data items we need to insert the data into our table (‘my_documents’). The first stept is to construct a data frame to contain all the data.

data_source = c("http://www.oracle.com/technetwork/database/options/advanced-analytics/overview/index.html",
                 "http://www.oracle.com/technetwork/database/options/advanced-analytics/odm/index.html",
                 "http://www.oracle.com/technetwork/database/database-technologies/r/r-technologies/overview/index.html",
                 "http://www.oracle.com/technetwork/database/database-technologies/r/r-enterprise/overview/index.html")
doc_title = c("OAA_OVERVIEW", "OAA_ODM", "R_TECHNOLOGIES", "OAA_ORE")
doc_extracted = Sys.Date()
data_text <- c(data1, data2, data3, data4)

my_docs <- data.frame(doc_title, doc_extracted, data_source, data_text)

Insert the data into our database table: With the data in our data fram (my_docs) we can now use this data to insert into our database table. There are a number of ways of doing this in R. What I’m going to show you here is how to do it using Oracle R Enterprise (ORE). The thing with ORE is that there is no explicit functionality for inserting and updating records in a database table. What you need to do is to construct, in my case, the insert statement and then use ore.exec to execute this statement in the database.