OML

OML Workspace Permissions

Posted on Updated on

When working with Oracle Machine Learning (OML) you are creating notebooks which focus on a particular data exploration and possibly some machine learning. Despite it’s name, OML is used extensively for data discovery and data exploration.

One of the aims of using OML, or notebooks in general, is that these can be easily shared with other people either within the same team or beyond. Something to consider when sharing notebooks is what you are allowing other people do with your notebook. Without any permissions you are allowing people to inspect, run and modify the notebooks. This can be a problem because those people you are sharing with may or may not be allowed to make modification. Some people should be able to just view the notebook, and others should be able to more advanced tasks.

With OML Notebooks there are four primary types of people who can access Notebooks and these can have different privileges. These are defined as

  • Developer : Can create new notebooks withing a project and workspace but cannot create a workspace or a project. Can create and run a notebook as a scheduled job.
  • Viewer : They can just view projects, Workspaces and notebooks. They are not allowed to create or run anything.
  • Manager : can create new notebooks and projects. But only view Workspaces. Additionally they can schedule notebook jobs.
  • Administrators : Administrators of the OML environment do not have any edit capabilities on notebooks. But they can view them.

Screenshot 2019-09-14 05.24.18

Screenshot 2019-09-14 10.40.23

Oracle ADW how to load new OML notebooks

Posted on Updated on

Oracle Autonomous Database (ADW) has been out a while now and have had several, behind the scenes, improvements and new/additional features added.

If you have used the Oracle Machine Learning (OML) component of ADW you will have seen the various sample OML Notebooks that come pre-loaded. These are easy to open, use and to try out the various OML features.

Screenshot 2019-07-29 13.07.01

The above image shows the top part of the login screen for OML. To see the available sample notebooks click on the Examples icon. When you do, you will get the following sample OML Notebooks.

Screenshot 2019-07-29 13.08.44

But what if you have a notebook you have used elsewhere. These can be exported in json format and loaded as a new notebook in OML.

To load a new notebook into OML, select the icon (three horizontal line) on the top left hand corner of the screen. Then select Notebooks from the menu.

Screenshot 2019-07-29 13.11.41           Screenshot 2019-07-29 13.21.07

Screenshot 2019-07-29 13.21.49

Then select the Import button located at the top of the Notebooks screen. This will open a File window, where you can select the json file from your file system.

Screenshot 2019-07-29 13.24.58

A couple of seconds later the notebook will be available and listed along side any other notebooks you may have created.

Screenshot 2019-07-29 13.26.13

All done!

You have now imported a new notebook into OML and can now use it to process your data and perform machine learning using the in-database features.