Oracle

Oracle 12c Books

Posted on

Oracle 12c is only a few days old and there are books available on Amazon. The carousels below list some of the books available on Amazon.com and Amazon.co.uk

Amazon.com Widgets

Amazon.co.uk Widgets

Upgrading your ODM Repository for SQL Dev 4

Posted on

For those users of Oracle Data Miner (ODM) that is part of SQL Developer, now that Oracle have finally released SQL Developer 4, you might want to upgrade to this new release. There are a lot of new features. Some of these are available for 11.2g and 12.1c databases and some are only available for 12.1c users.

I will have another blog post soon on the new Oracle Data Miner (ODM) features that are available in SQL Developer 4.

The instructions given below are what I did to upgrade so that I could use the new ODM tool/SQL Developer 4.

Step 1 – Install SQL Developer 4 : I have another blog post on what this involves, so check it out and complete the steps before you continue with the result of the steps below.

Step 2 – Make ODM Visible : After SQL Developer 4 opens you should see all your migrated connections. To make ODM visible you need to click on the Tools menu, select Oracle Data Miner and then Make Visible. This will open a number of tabs on the left hand side of SQL Developer. These will include Data Miner (connections), Workflow Structure and Workflow Jobs.

image

Step 3 – Open an ODM Connection : Take one your ODM connections and double click on it. SQL Developer 4 / ODM will check what versions of the ODM repository exists in your database. If this is your first time connecting from SQL Developer 4, you will be told that you will need to upgrade your repository

SNAGHTML19755c5

Step 4 – Upgrade the ODM Repository : Select the Yes button on the Upgrade Repository window. You will then be asked for the SYS password. If you do not have access to this you can talk nicely to your DBA and ask them to enter the password for you.

SNAGHTML198e42e

You may or may not get a warning message like the following. Just click OK to continue.

SNAGHTML199f5cb

Step 5 – Start the Repository Upgrade : When the Migrate Data Miner Repository window opens, just click the Start button. 

SNAGHTML19b0a35

This might be a good time to go off an make yourself a coffee. The upgrade process tool approx. 8 minutes on my laptop. If you were running this on a server located somewhere then the script will take a little bit longer to run!

The progress bar will let you know how things are progressing. It also gives some messages to let you known at what stage of the process it is at.

SNAGHTML19f591f

Step 6 – All finished : When the Repository Migration has finished you will get a window with a message saying Task Successfully Complete. Click on the Close button to close this window.

SNAGHTML1a0ffe9

Step 7 – Open an Existing Workflow : Just to make sure that everything has worked with the install and ODM Repository migration, open one of your existing workflows. If it opens then everything should be OK.

When you open the workflow, the new Workflow Editor tab opens on the right hand side of SQL Developer. This seems to have replaced the Component Palette we had with the pervious version of the ODM tool. Expand the headings under the Workflow Editor to see the different nodes that are available. Most of these are the same but we have 2 new nodes under the Data section. These are Graph and SQL Query. I’ll have more on these in another post or posts.

image

Auto-Starting your pluggables in 12c

Posted on

After installing 12c you get your container database and a pluggable. But the problem that most people have is that when they restart their server or in my case my VMs the container database gets started but the pluggable database does not automatically start. This means that you have to manually go in an start it. But this is a pain. Surely there is an easy way to get your pluggable databases to start. You would have though that Oracle would have some easy way of doing this.  If there is, I haven’t found it yet.

But I have come across how to automatically start your 12c pluggable databases, using a trigger.

CREATE or REPLACE trigger OPEN_ALL_PLUGGABLES
   after startup
   on  database
BEGIN
   execute immediate ‘alter pluggable database all open’;
END open_all_pdbs;

Let us test this out.  I’ve started my VirtualBox VM that has 12c installed on Windows 7. Here is the code that I ran to verify that the container has been started and the pluggable is in MOUNTED mode.

C:\Users\oracle>sqlplus / as sysdba

SQL*Plus: Release 12.1.0.1.0 Production on Wed Jul 17 15:27:35 2013

Copyright (c) 1982, 2013, Oracle.  All rights reserved.

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 – 64bit Production
With the Partitioning, OLAP, Advanced Analytics and Real Application Testing opt
ions

SQL> select name,DB_UNIQUE_NAME from v$database;

NAME      DB_UNIQUE_NAME
——— ——————————
ORCL      orcl

SQL> SELECT v.name, v.open_mode, NVL(v.restricted, ‘n/a’) “RESTRICTED”, d.status

  2  FROM v$pdbs v, dba_pdbs d
  3  WHERE v.guid = d.guid
  4  ORDER BY v.create_scn;

NAME                           OPEN_MODE  RES STATUS
—————————— ———- — ————-
PDB$SEED                       READ ONLY  NO  NORMAL
PDB12C                         MOUNTED    n/a NORMAL

SQL>

Next we will create the procedure (given above).

image

To test the automatic starting of the pluggables, we need to shut down the container database, by issuing the shutdown command.

SQL> shutdown
Database closed.
Database dismounted.
ORACLE instance shut down.

SQL> select name,DB_UNIQUE_NAME from v$database;
select name,DB_UNIQUE_NAME from v$database
*
ERROR at line 1:
ORA-01034: ORACLE not available
Process ID: 0
Session ID: 0 Serial number: 0

This shows us that the container database is shutdown.

Now we can start the container and test to see if the pluggable database is started automatically by the trigger.

SQL> startup
ORACLE instance started.

Total System Global Area  855982080 bytes
Fixed Size                  2408408 bytes
Variable Size             562036776 bytes
Database Buffers          285212672 bytes
Redo Buffers                6324224 bytes
Database mounted.
Database opened.
SQL>

SQL> select name,DB_UNIQUE_NAME from v$database;

NAME      DB_UNIQUE_NAME
——— ——————————
ORCL      orcl

SQL> select status from v$instance;

STATUS
————
OPEN

SQL> SELECT v.name, v.open_mode, NVL(v.restricted, ‘n/a’) “RESTRICTED”, d.status

  2  FROM v$pdbs v, dba_pdbs d
  3  WHERE v.guid = d.guid
  4  ORDER BY v.create_scn;

NAME                           OPEN_MODE  RES STATUS
—————————— ———- — ————-
PDB$SEED                       READ ONLY  NO  NORMAL
PDB12C                         READ WRITE NO  NORMAL

SQL>

We can see that the pluggable was started.

Installing Oracle 12c on Windows 7 64bit

Posted on

Here are the steps I when through to install Oracle 12.1c on Windows 7 64 bit.

  • Unzip the two 12c downloads files into the same directory. I called this directory database

image

  • Go down a couple of levels in the database directory until you come to the directory that contains setup.exe. Double click on this to start the installer.
  • Step 1 – Configure Security Updates:  Un-tick the tick-box and click the Next button. A warning message will appear. You can click on the Yes button to proceed.
  • Step 2 – Software Update : select the Skip Software Updates option and then click the Next button.
  • Step 3 – Installation Option : select the Create and Configure a Database option and then click the Next button.
  • Step 4 – System Class: Select the Server Class option and then click the Next button
  • Step 5 – Grid Installation Options : Select the Single Instance Database Installation option and then click the next button.
  • Step 6 – Install Types : Select the Typical install option and then click the Next button.
  • Step 7 – Installation Location : Select the Use Windows Built-in Account option and then click the Next button. An warning message appears. Click the Yes button.
  • Step 8 – Typical Installation.  Set Global Database Name to cdb12c for the container database name. Set the Administrative password for the container database. Set the name of the pluggable database that will be created. Set this to pdb12c. Or you can accept the default names. Then click the Next button. If you get a warning message saying the password does not conform to the recommended standards, you can click the Yes button to ignore this warning and proceed.
  • Step 9 – Prerequisite Checks : the install will check to see that you have enough space and necessary permissions etc.
  • Step 10 – Summary – You should now be ready to start the install. Click the Install button.

You can now sit back, relax and watch the installation of 12.1c complete.

You may get some Windows Security Alert windows pop up. Just click on the Allow Access button.

image

Then the Database Configuration Assistant will start. This step might take a while to complete.

image

When everything is done you will get something like the following

image

Now you are almost ready to start using your Pluggable 12c database on windows. The final two steps that you need to do is to add an entry to your tnsnames.ora file. You can manually do this if you know what you are doing or you can select Net Configuration Assistant under the Oracle –Ora12cDB Home 1 section of the windows menu. The second thing you need to do is to create a new user/schema.

Check out my previous blog post called ‘My first steps with 12c’ for how to do these last two steps. The ‘My fist steps with 12c’ post was based on installing 12c on Linux 6.

12c Roundup so far and Events

Posted on

I’m on vacation at the moment. As a result I’ve missed all the 12c launch and excitement that goes with it. I’ve managed to get a few minutes to put this post together. The aim of this post is to list some interesting blog posts (by other people over the past few days). I intend to expand the list when I get time.

I also wanted to highlight two 12c launch events. The first of these is the official Oracle 12c webcast. It is on Wednesday 10th July. Click on the following image to register etc. The webcast will have Mark Hurd, Andy Mendelsohn and Tom Kyte.

image

The second 12c launch event will be hosted by Oracle in Ireland. This will be on the 5th September in the Gibson Hotel (Dublin) between  13:00 and 17:30.  I believe their might be some 12c goodies available for the attendees. Again click on the image below to register and to check out the agenda.

image

The following are some articles and blog posts that have been published since 12c has been launched. This is not a complete list or and indication of quality, but I’ve noted them for me to come back to after my vacation to read. You might have come across others. If so let me know and I will add them to the list.

12.1c Download page

12.1c Documentation page

12.1c New Features Guide

Oracle Advanced Analytics Option 12c and SQL Dev 4 new features

Oracle Database 12c: Oracle Multitenant Option

Oracle website for Multitenent 

New DB12c feature involves invisibility

12c – SQL Text Expansion

Ever expanding SQL for 12c

Oracle 12c Magazine by @leight0nn in Flipboard

How long can you hold off on Oracle 12c

Oracle 12c Install articles by Tim Hall (oraclebase) on Linux5 and Linux6

 

Over the coming weeks (after my vacation) I will be posting some articles on the Advanced Analytics Option in 12c. There are a number of new features. Also when SQL Developer 4 comes out I will be including all the new functionality that is included in the updated ODM tool.

Part 3–Getting start with Statistics for Oracle Data Science projects

Posted on

This is the Part 3 blog post on getting started with Statistics for Oracle Data Science projects.

The table below is a collection of most of the statistical functions in Oracle 11.2. The links in the table bring you to the relevant section of the Oracle documentation where you will find a description of each function, the syntax and some examples of each.

ABS

LENGTH2

REGR_AVGX

ACOS

LENGTH4

REGR_ACGY

Aggregrate functions

LENGTHB

REGR_COUNT

Analytic functions

LENGTHC

REGR_INTERCEPT

Arithmetic operators

LN

REGR_R2

ASIN

LNNVL

REGR_SLOPE

ATAN

LOG

REGR_SXX

ATAN2

LOWER

REGR_SXY

AVG

LPAD

REGR_SYY

CAST

LTRIM

ROLLUP clause

Comparison functions

MAX

ROUND

CONCAT

MEDIAN

SAMPLE

CORR

MIN

SIN

CORR_K

MOD

SINH

CORR_S

MODEL clause

SQRT

COS

NTH_VALUE

STATS_BINOMIAL_TEST

COSH

Numeric Functions

STATS_CROSSTAB

COUNT

PERCENT_RANK

STATS_F_TEST

COVAR_POP

PERCENTILE_CONT

STATS_KS_TEST

COVAR_SAMP

PERCENTILE_DISC

STATS_MODE

CUBE clause

Pivot operations

STATS_MW_TEST

CUME_DIST

POWER

STATS_ONE_WAY_ANOVA

CV

PREDICTION

STATS_T_TEST_INDEP

Data functions

PREDICTION_BOUNDS

STATS_T_TEST_INDEPU

DENSE_RANK

PREDICTION_COST

STATS_T_TEST_ONE

EXP

PREDICTION_PROBABILITY

STATS_T_TEST_PAIRED

FLOOR

PREDICTION_SET

STATS_WSR_TEST

GREATEST

PRESENTNNV

STDDEV

Grouping Sets

PRESENTNTV

STDEEV_POP

INTERSECT

Prior clause

STDDEV_SAMP

Interval arithmetic

PRIOR

SUM

INTERVAL

RANK

TAN

Julian dates

RAWTOHEX

TANH

LAG

REGEXP_COUNT

t-test

LAST

REGEXP_INSTR

VAR_POP

LEAD

REGEXP_LIKE

VAR_SAMP

LEAST

REGEXP_REPLACE

VARIANCE

LENGTH

REGEXP_SUBSTR

WIDTH_BUCKET

The list about may not be complete (I’m sure it is not), but it will cover most of what you will need to use in your Oracle projects.

If you come across or know of other useful statistical functions in Oracle let me know the details and I will update the table above to include them.

Outputting your data using inbuilt SQL Dev formatting

Posted on

Oracle has build a number of formatting options into SQL Developer to allow you to output your data in some standard formats. This removes the need to use other tools or to write extra code or performs various follow up steps.
All you need to do is to add a comment and use the Scrip button
SELECT /*csv*/ * FROM scott.emp;
SELECT /*xml*/ * FROM scott.emp;
SELECT /*html*/ * FROM scott.emp;
SELECT /*delimited*/ * FROM scott.emp;
SELECT /*insert*/ * FROM SCOTT.EMP;
SELECT /*loader*/ * FROM scott.emp;
SELECT /*fixed*/ * FROM scott.emp;
SELECT /*text*/ * FROM scott.emp;

Hint: for some of these it is best to list the schema and table name in upper case
These are comments and not hints so they will not work in SQL*Plus.

Review of Oracle Magazine-July/August 1999

Posted on

The headline articles for the July/August 1999 edition of Oracle Magazine were focused on Business Intelligence and included topics on architectures, business plans, data integration, portals, dashboards, Oracle Express, data marts and data warehouses.

image

Other articles included:

  • 15 Rules for Enterprise Portals
    • Gear it to casual users
    • Use intuitive classifications and searching
    • Allow access to a publish/subscribe engine
    • Enable universal connectivity to information resources
    • Provide dynamic access to information resources
    • Set up intelligent routing
    • Integrate a business intelligence toolset
    • Use a server based architecture
    • Build in distributed, multithreaded services
    • Enable flexible permission granting
    • Append external interfaces
    • Provide programmatic interfaces
    • Establish internet security
    • Make it cost effective to deploy
    • Ensure that it can be customized and personalized
  • Oracle Application Server release 4.0.8 was available for beta testing and includes support for Enterprise JavaBeans. Java Servlets, Java Server Pages and allows developers to build robust self service applications quickly
  • Oracle and MapInfo joined forces to release an internet-based spatial-data analysis solution to help organizations to understand and visualize data and to identify patterns and customer trends
  • Oracle makes available Oracle iTV platform, that is a solution that makes it possible for broadcast, cable and telecommunications providers to deliver interactive services .
  • Nine tips for using Oracle Discover included:
    • Us the decode statement
    • Implement summary redirection
    • create optional conditions (filters)
    • use query statistics
    • perform regular maintenance on the query statistics tables
    • familiarize yourself with the EUL tables
    • make regular backups
    • modify registry settings
    • delete objects with care
  • Standardizing your interfaces. The first of a three part article on creating interfaces to the database. This article focused on showing how to setup and use UTL_FILE for loading data into and getting data out of the database.
  • Creating a Virtual Private Database in Oracle 8i describes how to approach such a project to implement fine grained access control and gives the following steps for setting up a VPD
    • create the application context
    • create a package that sets the context
    • create the policy function
    • associate the policy function with a table or view

To view the cover page and the table of contents click on the image at the top of this post or click here.

My Oracle Magazine Collection can be found here. You will find links to my blog posts on previous editions and a PDF for the very first Oracle Magazine from June 1987.

Oracle Magazine-September/October 1999

Posted on

The headline articles in the September/October 1999 edition of Oracle Magazine focused on how the Oracle technology can be used to educate staff and to keep their skills up to date. either on site or remote via on-demand training resources.

image

Other articles included:

  • Oracle announce that they have acquired Thinking Machine’s data mining business. This data mining product was called Darwin and is now called Oracle Data Mining. I will have a separate blog post for this announcement.
  • Oracle 8i Lite has shipped and comes with three component: Oracle Lite a single user (50K to 750K foot print), Web-to-Go allows users to access the same data and web applications both online and offline, iConnect that was a flexible architecture that enables reliable and scalable bi-directional synchronization of data and applications. Oracle 8i Lite was supported on MS Windows 95, 98 and NT, Windows CE, Palm OS and EPOC 32.
  • Oracle XML Parser for C and Oracle XML Parser for C++ are released and supports DOM and Simple API for XML (SAX) interfaces.
  • Oracle XML SQL utilities and XSQL Servlet facilitates the reading and writing of XML information from and to the Oracle database.
  • Siemens announce that they plan to build an Oracle 8i Applicance on its Primergy line of servers, based on Intel Pentium II Xeon processors.
  • Singapore Telecom’s Magix Server delivers the World’s first nationwide video on demand service. Their 12,000 subscriber were able to use a web-browser to select a video from the Megix Web side and SingTel automates the streaming of them to their computer.
  • Oracle 8i comes with some improvements in PL/SQL. These included Autonomous Transactions, Native Dynamic SQL, Invoker rights procedures, user-defined operators, new operators, bulk binds.
  • Part 2 of the article on exporting an Oracle Database to a Flat File. In this part of the article it looks at how you can use the UTL_FILE package.
  • How you can speed up query response times by using a Materialized Views. The article suggests the following steps to analyze the performance impact:
    • Configure the server parameters
    • Grant privileges to the appropriate schema
    • Create a materialized view
    • Refresh the optimizer statistics
    • Confirm that the materialized view is being used
    • Manually refresh a materialized view
  • Oracle introduces Oracle Log Miner to allow a DBA to analyze the REDO log files

Part 2–Getting start with Statistics for Oracle Data Science projects

Posted on

This is the second blog on getting started with Statistics for Oracle Data Science projects.

In this blog post I will look at 3 more useful statistical functions that are available in the Oracle database. Remember these come are standard with the database. The first function I will look at is the WIDTH_BUCKET function. This can be used to create some histograms of the data. A common task in analytics projects is to produce some cross tabs of the data. Oracle has the STATS_CROSSTAB. The last function I will look the different ways you an sample the data.

Histograms using WIDTH_BUCKET

When exploring your data it is useful to group values together into a number of buckets. Typically you might want to define the width of each bucket yourself before passing the data into your data mining tools, but before you can decide what these are you need to do some exploring using a variety of widths. A good way to do this is to use the WIDTH_BUCKET function. This takes the following inputs:

Expression: This is the expression or attribute on which the you want to build the histogram.

Min Value: This is the lower or starting value of the first bucket

Max Value: This is the last or highest value for the last bucket

Num Buckets: This is the number of buckets you want created.

Typically the Min Value and the Max Value can be calculated using the MIN and MAX functions. As a starting point you generally would select 10 for the number of buckets. This is the number you will change, downwards as well as upwards, to if a particular pattern exists in the attribute.

Using the example scenario that I used in the first blog post, let us start by calculating the MIN and MAX for the AGE attribute.

image

Lets say that we wanted to create 10 buckets. This would create a bucket width of 7.3 for each bucket, giving us the following.

Bucket 1 : 17-24.3
Bucket 2: 24.3-31.6
Bucket 3: 31.6-38.8
Bucket 4: 38.8-46.1
Bucket 5: 46.1-53.4
Bucket 6: 53.4-60.7
Bucket 7: 60.7-68
Bucket 8: 68-75.3
Bucket 9: 75.3-82.6
Bucket 10: 82.6-90

These are the buckets that the WIDTH_BUCKET function gives us in the following:

SELECT cust_id,
       age,
       width_bucket(age,
                    (SELECT min(age) from mining_data_build_v),
                    (select max(age)+1 from mining_data_build_v),
                    10)  bucket
from mining_data_build_v
where rownum <=12
group by cust_id, age

image

An additional level of detail that is needed to allow us to plot the histograms for AGE, we need to aggregate up for all the records by bucket.

select intvl, count(*) freq
from (select width_bucket(salary,
(select min(salary) from employees),
(select max(salary)+1 from employees), 10) intvl
from HR.employees)
group by intvl
order by intvl;

image

We can take this code and embed it into the GATHER_DATA_STATS procedure that I gave in my Part 1 blog post.

Cross Tabs using STATS_CROSSTAB

Typically cross tabulation (or crosstabs for short) is a statistical process that summarises categorical data to create a contingency table. They provide a basic picture of the interrelation between two variables and can help find interactions between them.

Because Crosstabs creates a row for each value in one variable and a column for each value in the other, the procedure is not suitable for continuous variables that assume many values.

In Oracle we can perform crosstabs using one of their reporting tools. But if you don’t have one of these we will need to use the in-database function STATS_CROSSTAB. This function takes three parameters, the first two of these are the attributes you want to compare and the third is what test we want to perform. The tests available include:

  • CHISQ_OBS: Observed value of chi-squared
  • CHISQ_SIG: Significance of observed chi-squared
  • CHISQ_DF: Degree of freedom for chi-squared
  • PHI_COEFFICIENT: Phi coefficient
  • CRAMERS_V: Cramer’s V statistic
  • CONT_COEFFICIENT: Contingency coefficient
  • COHENS_K: Cohen’s kappa

CHISQ_SIG is the default.

Now let us look at some examples using our same data set.

image

Sampling Data

When our datasets are of relatively small size consisting of a few hundred thousand records we can explore the data is a relatively short period of time. But if your data sets are larger that that you may need to explore the data by taking a sample of it. What sampling does is that it takes a “random” selection of records from our data set up to the new number of records we have specified in the sample.

In Oracle the SAMPLE function takes a percentage figure. This is the percentage of the entire data set you want to have in the Sampled result. 

image

There is also a variant called SAMPLE BLOCK and the figure given is the percentage of records to select from each block.

image

Each time you use the SAMPLE function Oracle will generate a random seed number that it will use as a Seed for the SAMPLE function. If you omit a Seed number (like in the above examples), you will get a different result set in each case and the result set will have a slightly different number of records. If you run the sample code above over and over again you will see that the number of records returned varies by a small amount.

If you would like to have the same Sample data set returned each time then you will need to specify a Seed value. The Seed much be an integer between 0 and 4294967295.

image

In this case because we have specified the Seed we get the same “random” records being returned with each execution.

Part 1–Getting started with Statistics for Oracle Data Science projects

Posted on Updated on

With all analytics or data science projects one of the first steps typically involves the extraction of data from various sources, merging the data and then performing various statistics.

The extraction and merging of the data is well covered by lots of other people blogging about how to use Oracle Data Integration (ODI), Oracle Warehouse Builder (OWB), among many others.

What I’m going to look at in this series of blog posts will be what statistical functions you might look at using in the Oracle and how to use them.

  • This the first blog post in the series will look at the DBMS_STAT_FUNCS PL/SQL package, what it can be used for and I give some sample code on how to use it in your data science projects. I also give some sample code that I typically run to gather some additional stats.
  • The second blog post will look at some of the other statistical functions that exist in SQL that you will/may use regularly in your data science projects.
  • The third blog post will provide a summary of the other statistical functions that exist in the database.

These statistical functions can be grouped into 2 main types. The first is the descriptive statistics that are available by using the DBMS_STAT_FUNCS PL/SQL package and then there is the extensive list of other SQL stats functions.  It is worth mentioning at this point that all these stats packages and functions come as standard in the database (i.e. they are FREE, you do not have to pay for an add on option for the database to use them). So once you have you Oracle database installed you can start using them. There is no need to spend money buying another stats package to do stats. All you need to know is some SQL and what the stats functions are.

DBMS_STAT_FUNCS

One of the stats package that I use a lot is the SUMMARY function. This is part of the DBMS_STAT_FUNC PL/SQL package. This package calculates a number of common statistics for an attribute in a table. Yes that’s correct, it only gather statistics for just one attribute. So you will have to run it for all the numeric attributes in the table.

For does people who are familiar with the Oracle Data Miner tool, the explore data node produces a lot of these statistics that the SUMMARY function produces. See below for details of how to produce the Histograms.

The SUMMARY function has the following parameters

image

Although you will probably be running this this function on the data in your schema you still have to give the schema name. The table name is the name of the table where the data exists, the column name is the name of the column that contains the actual data you want to analyse, and the ‘s’ is the record that will be returned by the SUMMARY function that contains all the summary information.

An example of the basic script to run the SUMMARY function is given below. It will use the data that is available in the sample schemas and the views that where setup for the Oracle Data Mining sample schemas. The table (or in this case the view) that we are going to use is the MINING_DATA_BUILD_V. What we are going to do is to replicate some of what the Explore Node does in the Oracle Data Miner tool.

set serveroutput on

declare
   s         DBMS_STAT_FUNCS.SummaryType;
begin
 
   DBMS_STAT_FUNCS.SUMMARY(‘DMUSER’, ‘MINING_DATA_BUILD_V’, ‘AGE’, 3, s);

   dbms_output.put_line(‘SUMMARY STATISTICS’);
   dbms_output.put_line(‘Count  : ‘||s.count);
   dbms_output.put_line(‘Min    : ‘||s.min);
   dbms_output.put_line(‘Max    : ‘||s.max);
   dbms_output.put_line(‘Range  : ‘||s.range);
   dbms_output.put_line(‘Mean   : ‘||round(s.mean));
   dbms_output.put_line(‘Mode Count : ‘||s.cmode.count);
   dbms_output.put_line(‘Mode        : ‘||s.cmode(1));
   dbms_output.put_line(‘Variance    : ‘||round(s.variance));
   dbms_output.put_line(‘Stddev      : ‘||round(s.stddev));
   dbms_output.put_line(‘Quantile 5  : ‘||s.quantile_5);
   dbms_output.put_line(‘Quantile 25 : ‘||s.quantile_25);
   dbms_output.put_line(‘Median      : ‘||s.median);
   dbms_output.put_line(‘Quantile 75 : ‘||s.quantile_75);
   dbms_output.put_line(‘Quantile 95 : ‘||s.quantile_95);
   dbms_output.put_line(‘Extreme Count : ‘||s.extreme_values.count);
   dbms_output.put_line(‘Extremes      : ‘||s.extreme_values(1));
   dbms_output.put_line(‘Top 5 : ‘||s.top_5_values(1)||’,’||
                                                s.top_5_values(2)||’,’||
                                                s.top_5_values(3)||’,’||
                                                s.top_5_values(4)||’,’||
                                                s.top_5_values(5));
   dbms_output.put_line(‘Bottom 5 : ‘||s.bottom_5_values(5)||’,’||
                                                     s.bottom_5_values(4)||’,’||
                                                     s.bottom_5_values(3)||’,’||
                                                     s.bottom_5_values(2)||’,’||
                                                     s.bottom_5_values(1));
end;
/

image

We can compare this to what is produced by the Explore Node in ODM

image
image

We can see that the Explore Node gives us more statistics to help us with understanding the data.

What Statistics does the Explore Node produce

We can see the actual SQL code that the Explore Node runs to get the statistics that are displayed in the Explore Node View Data window. To do this you will need to right-click on the Explore Node and move the mouse down to the Deploy option. The submenu will open and select ‘SQL to Clipboard’ from the list. Open a text editor and past the code. You  will need to tidy up some of this code to point it at the actual data source you want. You will get the following

SELECT /*+ inline */  ATTR, 
       DATA_TYPE, 
       NULL_PERCENT, 
       DISTINCT_CNT, 
       DISTINCT_PERCENT, 
       MODE_VALUE,
       AVG,
       MIN,
       MAX,
       STD,
       VAR,
       SKEWNESS,
       KURTOSIS,
       HISTOGRAMS
FROM OUTPUT_1_23;

Where OUTPUT_1_23 is a working table that ODM has created to store intermediate results from some of its processing. In this case the Explore Node. You will need to change this to the ODM working table in your schema.

This query does not perform any of the statistics gathering. It just presents the results.

Creating our own Statistics gathering script – Part 1

The attribute names in the above SQL query tells us what statistics functions within Oracle that were used. We can replicate this statistics gathering task using the following script. There are four parts to this script. The first part gathers most of the common statistics for the attribute. The second and third parts calculate the Skewness and Kurtosis for the attribute. The final (fourth) part combines the first three parts and lists the outputs.

The one statistic function that we are not including at this point is the Histogram information. I will cover this in the next (second) blog post on statistics.

The following script has the data source table/view name included (MINING_DATA_BUILD_V) and the attribute we are going to use (AGE).  You will need to modify this script to run it for each attribute.

WITH
    basic_statistics AS (select (sum(CASE WHEN age IS NULL THEN 1 ELSE 0 END)/COUNT(*))*100 null_percent,
          count(*)    num_value,
          count(distinct age)   distinct_count,
          (count(distinct age)/count(*))*100     distinct_percent,
          avg(age)      avg_value,
          min(age)      min_value,
          max(age)     max_value,
          stddev(age)  std_value,
          stats_mode(age)   mode_value,
          variance(age)       var_value
        from   mining_data_build_v),
    skewness AS (select avg(SV) S_value
                 from (select power((age – avg(age) over ())/stddev(age) over (), 3) SV
                       from mining_data_build_v) ),
    kurtosis AS (select avg(KV) K_value
                 from (select power((age – avg(age) over ())/stddev(age) over (), 4) KV
                       from mining_data_build_v) )
SELECT null_percent,
       num_value,
       distinct_percent,
       avg_value,
       min_value,
       max_value,
       std_value,
       mode_value,
       var_value,
       S_value,
       K_value
from basic_statistics,
     skewness,
     kurtosis;

image

Part 2 – Lets do it for all the attributes in a table

In the code above I’ve shown how you can gather the statistics for one particular attribute of one table.But in with an analytics project you will want to gather the statistics on all the attributes.

What we can do is to take the code above and put it into a procedure. This procedure accepts a table name as input, loops through the attributes for this table and calculates the various statistics. The statistics are saved in a table called DATA_STATS (see below).

drop table data_stats;

create table DATA_STATS (
table_name VARCHAR2(30) NOT NULL,
column_name VARCHAR2(30) NOT NULL,
data_type VARCHAR2(106) NOT NULL,
data_length NUMBER,
data_percision NUMBER,
data_scale NUMBER,
num_records NUMBER,
distinct_count NUMBER,
null_percent NUMBER,
distinct_percent NUMBER,
avg_value NUMBER,
min_value NUMBER,
max_value NUMBER,
std_value NUMBER,
mode_value VARCHAR2(1000),
var_value NUMBER,
s_value NUMBER,
k_value NUMBER,
PRIMARY KEY (table_name, column_name));

This is one of the first things that I do when I start on a new project. I create the DATA_STATS table and run my procedure GATHER_DATA_STATS for each table that we will be using. By doing this it allows me to have a permanent records of the stats for each attribute and saves me time in having to rerun various stats at different points of the project. I can also use these stats to produces some additional stats or to produce some graphs.

He is the code for the GATHER_DATA_STATS procedure.

CREATE OR REPLACE PROCEDURE gather_data_stats(p_table_name IN varchar2) AS

   cursor c_attributes (c_table_name varchar2)
                       is SELECT table_name,
                                 column_name,
                                 data_type,
                                 data_length,
                                 data_precision,
                                 data_scale
                          FROM user_tab_columns
                          WHERE table_name = upper(c_table_name);

   v_sql     NUMBER;
   v_rows    NUMBER;
BEGIN
   dbms_output.put_line(‘Starting to gather statistics for ‘||upper(p_table_name)||’ at ‘||to_char(sysdate,’DD-MON-YY HH24:MI:SS’));

   FOR r_att in c_attributes(p_table_name) LOOP
      —
      — remove any previously generated stats
      —
      v_sql := DBMS_SQL.OPEN_CURSOR;
      DBMS_SQL.PARSE(v_sql, ‘delete from DATA_STATS where table_name = ”’||r_att.table_name||”’ and column_name = ”’||r_att.column_name||””, DBMS_SQL.NATIVE);
      v_rows := DBMS_SQL.EXECUTE(v_sql);
–dbms_output.put_line(‘delete from DATA_STATS where table_name = ”’||r_att.table_name||”’ and column_name = ”’||r_att.column_name||””);

      IF r_att.data_type = ‘NUMBER’ THEN
         dbms_output.put_line(r_att.table_name||’ : ‘||r_att.column_name||’ : ‘||r_att.data_type);

         —
         — setup the insert statement and execute
         —
         v_sql := DBMS_SQL.OPEN_CURSOR;
         DBMS_SQL.PARSE(v_sql, ‘insert into data_stats select ”’||r_att.table_name||”’, ”’||r_att.column_name||”’, ”’||r_att.data_type||”’, ‘||r_att.data_length||’, ‘||nvl(r_att.data_precision,0)||’, ‘||nvl(r_att.data_scale,0)||’, count(*) num_value, (sum(CASE WHEN ‘||r_att.column_name||’ IS NULL THEN 1 ELSE 0 END)/COUNT(*))*100 null_percent, count(distinct ‘||r_att.column_name||’) distinct_count, (count(distinct ‘||r_att.column_name||’)/count(*))*100 distinct_percent, avg(‘||r_att.column_name||’) avg_value, min(‘||r_att.column_name||’) min_value, max(‘||r_att.column_name||’) max_value, stddev(‘||r_att.column_name||’) std_value, stats_mode(‘||r_att.column_name||’) mode_value, variance(‘||r_att.column_name||’) var_value, null, null from ‘|| r_att.table_name, DBMS_SQL.NATIVE);
         v_rows := DBMS_SQL.EXECUTE(v_sql);

      ELSIF r_att.data_type IN (‘CHAR’, ‘VARCHAR’, ‘VARCHAR2’) THEN
         dbms_output.put_line(r_att.table_name||’ : ‘||r_att.column_name||’ : ‘||r_att.data_type);

         —
         — We need to gather a smaller number of stats for the character attributes
         —
         v_sql := DBMS_SQL.OPEN_CURSOR;
         begin

         DBMS_SQL.PARSE(v_sql, ‘insert into data_stats select ”’||r_att.table_name||”’, ”’||r_att.column_name||”’, ”’||r_att.data_type||”’, ‘||r_att.data_length||’, ‘||nvl(r_att.data_precision,0)||’, ‘||nvl(r_att.data_scale,0)||’, count(*) num_value, (sum(CASE WHEN ‘||r_att.column_name||’ IS NULL THEN 1 ELSE 0 END)/COUNT(*))*100 null_percent, count(distinct ‘||r_att.column_name||’) distinct_count, (count(distinct ‘||r_att.column_name||’)/count(*))*100 distinct_percent, null, null, null, null, stats_mode(‘||r_att.column_name||’) mode_value, null, null, null from ‘|| r_att.table_name, DBMS_SQL.NATIVE);
         v_rows := DBMS_SQL.EXECUTE(v_sql);

— dbms_output.put_line(‘insert into data_stats select ”’||r_att.table_name||”’, ”’||r_att.column_name||”’, ”’||r_att.data_type||”’, ‘||r_att.data_length||’, ‘||nvl(r_att.data_precision,0)||’, ‘||nvl(r_att.data_scale,0)||’, count(*) num_value, (sum(CASE WHEN ‘||r_att.column_name||’ IS NULL THEN 1 ELSE 0 END)/COUNT(*))*100 null_percent, count(distinct ‘||r_att.column_name||’) distinct_count, (count(distinct ‘||r_att.column_name||’)/count(*))*100 distinct_percent, null, null, null, null, stats_mode(‘||r_att.column_name||’) mode_value, null, null, null from ‘|| r_att.table_name);
         exception
         when others then
            dbms_output.put_line(v_rows);
         end;

      ELSE
         dbms_output.put_line(‘Unable to gather statistics for ‘||r_att.column_name||’ with data type of ‘||r_att.data_type||’.’);
      END IF;
   END LOOP;

   dbms_output.put_line(‘Finished gathering statistics for ‘||upper(p_table_name)||’ at ‘||to_char(sysdate,’DD-MON-YY HH24:MI:SS’));
  
   commit;
END;

Then to run it for a table: exec gather_data_stats(‘mining_data_build_v’);

We can view the contents of the DATA_STATS table by executing the following in SQL*Plus or SQL Developer

select * from DATA_STATS;

image

Review of Oracle Magazine–May/June 1999

Posted on

The headline articles for the May/June 1999 edition of Oracle Magazine were focused on using internet technologies to allow businesses to work together more efficiently.

image

Other articles included:

  • Oracle and Hewlett-Packard announce the a prebuild Oralce 8i appliance. This had a code-name of Raw Iron.
  • Oracle announce a $100million venture fund to promote innovation by companies developing products and services based on Oracle 8i
  • Oracle 8i comes with the an enhanced feature that automatically keeps a standby database synchronized with the production database. This is called the Automated Standby Databases (ASD) and hopes to reduce the amount of manual work DBAs need to perform.
  • Some helpful suggestions on how to go about implementing parallel DML in Oracle 8.
    • Rules for Parallel Insert
      • The insert statement must be of the form ‘insert into table_name select …’
      • The table being modified must have a specified parallel declaration or you must specify a parallel hint directive in the insert statement
      • You can perform parallel insert on non-partitioned as well as partitioned tables
      • After the parallel DML is complete no other SQL statements can access the same table until a Commit is issued.
    • Rules for Parallel Update and Delete
      • Table table must have a parallel declaration specified or you must specify a parallel hint directive in the update/delete statement
      • You can perform parallel update or delete on partitioned tables only
      • You cannot see the result of the parallel update or delete during the transaction
  • By using the parallel options, data intensive SQL statements, database recovery, and data loads can be executed by multiple processes simultaneously. All the following operations can be executed in parallel
    • table scan
    • sort merge join
    • Not In
    • select distinct
    • aggregation
    • cube
    • create table as select
    • rebuild index partition
    • move partition
    • update
    • Insert ….. select
    • Enable constraint
    • PL/SQL functions called from SQL
    • Nested loop join
    • Hash join
    • Group by
    • Union and union all
    • Order by
    • Rollup
    • Create index
    • Rebuild index
    • Split partition
    • Delete
    • Star transformation

To view the cover page and the table of contents click on the image at the top of this post or click here.

My Oracle Magazine Collection can be found here. You will find links to my blog posts on previous editions and a PDF for the very first Oracle Magazine from June 1987.