R

Creating and Reading SPSS and SAS data sets in R

Posted on Updated on

Have you ever been faced with having to generate a data set in the format that is needed by another analytics tool? or having to generate a data set in a particular format but you don’t have the software that generates that format? For example, if you are submitting data to the FDA and other bodies, you may need to submit the data in a SAS formatted file. There are a few ways you can go about this.

One option is that you can use the Haven R package to generate your dataset in SAS and SPSS formats. But you can also read in SAS and SPSS formatted files. I have to deal with these formatted data files all the time, and it can be a challenge, but I’ve recently come across the Haven R package that has just made my life just a little bit/lots easier. Now I can easily generate SAS and SPSS formatted data sets for my data in my Oracle Database, using R and ORE. ORE we can now use the embedded feature to build the generation of these data sets into some of our end-user applications.

Let us have a look at Haven and what it can do.

Firstly there is very little if any documentation online for it. That is ok so we will have to rely on the documentation that comes with the R packages. Again there isn’t much to help and that is because the R package mainly consists of functions to Read in these data sets, functions to Write these data sets and some additional functions for preparing data.

For reading in data sets we have the following functions:

# SAS
read_sas("mtcars.sas7bdat")
# Stata
read_dta("mtcars.dta")
# SPSS
read_sav("mtcars.sav")

For writing data sets we have the following functions:

# SAS
write_sas(mtcars, "mtcars.sas7bdat")
# Stata
write_dta(mtcars, "mtcars.dta")
# SPSS
write_sav(mtcars, "mtcars.sav")

Let us now work through an example of creating a SAS data set. We can use some of the sample data sets that come with the Oracle Database in the SH schema. I’m going to use the data in the CUSTOMER table to create a SAS data set. In the following code I’m using ORE to connect to the database but you can use your preferred method.

> library(ORE)
> # Create your connection to the schema in the DB
> ore.connect(user="sh", password="sh", host="localhost", service_name="PDB12C", 
            port=1521, all=TRUE) 

> dim(CUSTOMERS)
[1] 55500    23
> names(CUSTOMERS)
 [1] "CUST_ID"                "CUST_FIRST_NAME"        "CUST_LAST_NAME"        
 [4] "CUST_GENDER"            "CUST_YEAR_OF_BIRTH"     "CUST_MARITAL_STATUS"   
 [7] "CUST_STREET_ADDRESS"    "CUST_POSTAL_CODE"       "CUST_CITY"             
[10] "CUST_CITY_ID"           "CUST_STATE_PROVINCE"    "CUST_STATE_PROVINCE_ID"
[13] "COUNTRY_ID"             "CUST_MAIN_PHONE_NUMBER" "CUST_INCOME_LEVEL"     
[16] "CUST_CREDIT_LIMIT"      "CUST_EMAIL"             "CUST_TOTAL"            
[19] "CUST_TOTAL_ID"          "CUST_SRC_ID"            "CUST_EFF_FROM"         
[22] "CUST_EFF_TO"            "CUST_VALID"      

Next we can prepare the data, take a subset of the data, reformat the data, etc. For me I just want to use the data as it is. All I need to do now is to pull the data from the database to my local R environment.

dat <- ore.pull(CUSTOMERS)

Then I need to load the Haven library and then create the SAS formatted file.

library(haven)
write_sas(dat, "c:/app/my_customers.sas7bdat")

That’s it. Nice and simple.

But has it worked? Has it created the file correctly? Will it load into my SAS tool?

There is only one way to test this and that is to only it in SAS. I have an account on SAS OnDemand with access to several SAS products. I’m going to use SAS Studio.

Well it works! The following image shows SAS Studio after I had loaded the data set with the variables and data shown.

NewImage

WARNING: When you load the data set into SAS you may get a warning message saying that it isn’t a SAS data set. What this means is that it is not a data set generated by SAS. But as you can see in the image above all the data got loaded OK and you can work away with it as normal in your SAS tools.

The next step is to test the loading of a SAS data set into R. I’m going to use one of the standard SAS data sets called PVA97NK.SAS7BDAT. If you have worked with SAS products then you will have come across this data set.

When you use Haven to load in your SAS data set, it will create the data in tribble format. This is a slight varient of a data.frame. So if you want the typical format of a data.frmae then you will need to convert the loaded data, as shown in the following code.

> data_read  dim(data_read)
[1] 9686   28
> d class(data_read)
[1] "tbl_df"     "tbl"        "data.frame"
> class(d)
[1] "data.frame"
> head(d)
  TARGET_B       ID TARGET_D GiftCnt36 GiftCntAll GiftCntCard36 GiftCntCardAll
1        0 00014974       NA         2          4             1              3
2        0 00006294       NA         1          8             0              3
3        1 00046110        4         6         41             3             20
...

I think this package to going to make my life a little bit easier, and if you work with SPSS and SAS data sets then hopefully some of your tasks have become a little bit easier too.

Advertisements

Machine Learning notebooks (and Oracle)

Posted on Updated on

Over the past 12 months there has been an increase in the number of Machine Learning notebooks becoming available.

What is a Machine Learning notebook?

As the name implies it can be used to perform machine learning using one or more languages and allows you to organise your code, scripts and other details in one application.

The ML notebooks provide an interactive environment (sometimes browser based) that allows you to write, run, view results, share/collaborate code and results, visualise data, etc.

Some of these ML notebooks come with one language and others come with two or more languages, and have the ability to add other ML related languages. The most common languages are Spark, Phython and R.

Based on these languages ML notebooks are typically used in the big data world and on Hadoop.

NewImage

Examples of Machine Learning notebooks include: (Starting with the more common ones)

  • Apache Zeppelin
  • Jupyter Notebook (formally known as IPython Notebook)
  • Azure ML R Notebook
  • Beaker Notebook
  • SageMath

At Oracle Open World (2016), Oracle announced that they are currently working creating their own ML notebook and it is based on Apache Zeppelin. They seemed to indicate that a beta version might be available in 2017. Here are some photos from that presentation, but with all things that Oracle talk about you have to remember and take into account their Safe Habor.

2016 09 22 12 43 41

2016 09 22 12 45 53

2016 09 21 12 16 09

I’m looking forward to getting my hands on this new product when it is available.

Change the size of ORE PNG graphics using in-database R functions

Posted on Updated on

In a previous blog post I showed you how create and display a ggplot2 R graphic using SQL. Make sure to check it out before reading the rest of this blog post.

In my previous blog post, I showed and mentioned that the PNG graphic returned by the embedded R execution SQL statement was not the same as what was produced if you created the graphic in an R session.

Here is the same ggplot2 graphic. The first one is what is produced in an R session and the section is what is produced by SQL query and the embedded R execution in Oracle.

NewImage

NewImage

As you can see the second image (produced using the embedded R execution) gives a very square image.

The reason for this is that Oracle R Enterprise (ORE) creates the graphic image in PNG format. The default setting from this is 480 x 480. You will find this information when you go digging in the R documentation and not in the Oracle documentation.

So, how can I get my ORE produced graphic to appear like what is produced in R?

What you need to do is to change the height and width of the PNG image produced by ORE. You can do this by passing parameters in the SQL statement used to call the user defined R function, that in turn produces the ggplot2 image.

In my previous post, I gave the SQL statement to call and produce the graphic (shown above). One of the parameters to the rqTableEval function was set to null. This was because we didn’t have any parameters to pass, apart from the data set.

We can replace this null with any parameters we want to pass to the user defined R function (demo_ggpplot). To pass the parameters we need to define them using a SELECT statement.

cursor(select 500 as "ore.png.height", 850 as "ore.png.width" from dual),

The full SELECT statement now becomes

select *
from table(rqTableEval( cursor(select * from claims),
                        cursor(select 500 as "ore.png.height", 850 as "ore.png.width" from dual),
                        'PNG',
                        'demo_ggpplot'));

When you view the graphic in SQL Developer, you will get something that looks a bit more like what you would expect or want to see.

NewImage

For each graphic image you want to produce using ORE you will need to figure out that are the best PNG height and width settings to use. Plus it also depends on what tool or application you are going to use to display the images (eg. APEX etc)

Oracle Text, Oracle R Enterprise and Oracle Data Mining – Part 1

Posted on

A project that I’ve been working on for a while now involves the use of Oracle Text, Oracle R Enterprise and Oracle Data Mining. Oracle Text comes with your Oracle Database licence. Oracle R Enterprise and Oracle Data Mining are part of the Oracle Advanced Analytics (extra cost) option.

What I will be doing over the course of 4 or maybe 5 blog posts is how these products can work together to help you gain a grater insight into your data, and part of your data being large text items like free format text, documents (in various forms e.g. html, xml, pdf, ms word), etc.

Unfortunately I cannot show you examples from the actual project I’ve been working on (and still am, from time to time). But what I can do is to show you how products and components can work together.

In this blog post I will just do some data setup. As with all project scenarios there can be many ways of performing the same tasks. Some might be better than others. But what I will be showing you is for demonstration purposes.

The scenario: The scenario for this blog post is that I want to extract text from some webpages and store them in a table in my schema. I then want to use Oracle Text to search the text from these webpages.

Schema setup: We need to create a table that will store the text from the webpages. We also want to create an Oracle Text index so that this text is searchable.

drop sequence my_doc_seq;
create sequence my_doc_seq;

drop table my_documents;

create table my_documents (
doc_pk number(10) primary key, 
doc_title varchar2(100), 
doc_extracted date, 
data_source varchar2(200), 
doc_text clob);

create index my_documents_ot_idx on my_documents(doc_text) 
indextype is CTXSYS.CONTEXT;

In the table we have a number of descriptive attributes and then a club for storing the website text. We will only be storing the website text and not the html document (More on that later). In order to make the website text searchable in the DOC_TEXT attribute we need to create an Oracle Text index of type CONTEXT.

There are a few challenges with using this type of index. For example when you insert a new record or update the DOC_TEXT attribute, the new values/text will not be reflected instantly, just like we are use to with traditional indexes. Instead you have to decide when you want to index to be updated. For example, if you would like the index to be updated after each commit then you can create the index using the following.

create index my_documents_ot_idx on my_documents(doc_text) 
indextype is CTXSYS.CONTEXT
parameters ('sync (on commit)');

Depending on the number of documents you have being committed to the DB, this might not be for you. You need to find the balance. Alternatively you could schedule the index to be updated by passing an interval to the ‘sync’ in the above command. Alternatively you might want to use DBMS_JOB to schedule the update.

To manually sync (or via DBMS_JOB) the index, assuming we used the first ‘create index’ statement, we would need to run the following.

EXEC CTX_DDL.SYNC_INDEX('my_documents_ot_idx');

This function just adds the new documents to the index. This can, over time, lead to some fragmentation of the index, and will require it to the re-organised on a semi-regular basis. Perhaps you can schedule this to happen every night, or once a week, or whatever makes sense to you.

BEGIN
  CTX_DDL.OPTIMIZE_INDEX('my_documents_ot_idx','FULL');
END;

(I could talk a lot more about setting up some basics of Oracle Text, the indexes, etc. But I’ll leave that for another day or you can read some of the many blog posts that already exist on the topic.)

Extracting text from a webpage using R: Some time ago I wrote a blog post on using some of the text mining features and packages in R to produce a word cloud based on some of the Oracle Advanced Analytics webpages.

I’m going to use the same webpages and some of the same code/functions/packages here.

The first task you need to do is to get your hands on the ‘htmlToText function. You can download the htmlToText function on github. This function requires the ‘Curl’ and ‘XML’ R packages. So you may need to install these.

I also use the str_replace_all function (“stringer’ R package) to remove some of the html that remains, to remove some special quotes and to replace and occurrences of ‘&’ with ‘and’.

# Load the function and required R packages
source(“c:/app/htmltotext.R”)
library(stringr)

data1 <- str_replace_all(htmlToText("http://www.oracle.com/technetwork/database/options/advanced-analytics/overview/index.html"), "[\r\n\t\"\'\u201C\u201D]" , "")
data1 <- str_replace_all(data1, "&", "and")
data2 <- str_replace_all(str_replace_all(htmlToText("http://www.oracle.com/technetwork/database/options/advanced-analytics/odm/index.html"), "[\r\n\t\"\'\u201C\u201D]" , ""), "&", "and")
data2 <- str_replace_all(data2, "&", "and")
data3 <- str_replace_all(str_replace_all(htmlToText("http://www.oracle.com/technetwork/database/database-technologies/r/r-technologies/overview/index.html"), "[\r\n\t\"\'\u201C\u201D]" , ""), "&", "and")
data3 <- str_replace_all(data3, "&", "and")
data4 <- str_replace_all(str_replace_all(htmlToText("http://www.oracle.com/technetwork/database/database-technologies/r/r-enterprise/overview/index.html"), "[\r\n\t\"\'\u201C\u201D]" , ""), "&", "and")
data4 <- str_replace_all(data4, "&", "and")

We now have the text extracted and cleaned up.

Create a data frame to contain all our data: Now that we have the text extracted, we can prepare the other data items we need to insert the data into our table (‘my_documents’). The first stept is to construct a data frame to contain all the data.

data_source = c("http://www.oracle.com/technetwork/database/options/advanced-analytics/overview/index.html",
                 "http://www.oracle.com/technetwork/database/options/advanced-analytics/odm/index.html",
                 "http://www.oracle.com/technetwork/database/database-technologies/r/r-technologies/overview/index.html",
                 "http://www.oracle.com/technetwork/database/database-technologies/r/r-enterprise/overview/index.html")
doc_title = c("OAA_OVERVIEW", "OAA_ODM", "R_TECHNOLOGIES", "OAA_ORE")
doc_extracted = Sys.Date()
data_text <- c(data1, data2, data3, data4)

my_docs <- data.frame(doc_title, doc_extracted, data_source, data_text)

Insert the data into our database table: With the data in our data fram (my_docs) we can now use this data to insert into our database table. There are a number of ways of doing this in R. What I’m going to show you here is how to do it using Oracle R Enterprise (ORE). The thing with ORE is that there is no explicit functionality for inserting and updating records in a database table. What you need to do is to construct, in my case, the insert statement and then use ore.exec to execute this statement in the database.

Creating ggplot2 graphics using SQL

Posted on

Did you read the title of this blog post! Read it again.

Yes, Yes, I know what you are saying, “SQL cannot produce graphics or charts and particularly not ggplot2 graphics”.

You are correct to a certain extent. SQL is rubbish a creating graphics (and I’m being polite).

But with Oracle R Enterprise you can now produce graphics on your data using the embedded R execution feature of Oracle R Enterprise using SQL. In this blog post I will show you how.

1. Pre-requisites

You need to have installed Oracle R Enterprise on your Oracle Database Server. Plus you need to install the ggplot2 R package.

In your R session you will need to setup a ORE connection to your Oracle schema.

2. Write and Test your R code to produce the graphic

It is always a good idea to write and test your R code before you go near using it in a user defined function.

For our (first) example we are going to create a bar chart using the ggplot2 R package. This is a basic example and the aim is to illustrate the steps you need to go through to call and produce this graphic using SQL.

The following code using the CLAIMS data set that is available with/for Oracle Advanced Analytics. The first step is to pull the data from the table in your Oracle schema to your R session. This is because ggplot2 cannot work with data referenced by an ore.frame object.

data.subset <- ore.pull(CLAIMS) 

Next we need to aggregate the data. Here we are counting the number of records for each Make of car.

aggdata2 <- aggregate(data.subset$POLICYNUMBER,
                      by = list(MAKE = data.subset$MAKE),
                      FUN = length)

Now load the ggplot2 R package and use it to build the bar chart.

ggplot(data=aggdata2, aes(x=MAKE, y=x, fill=MAKE)) + 
       geom_bar(color="black", stat="identity") +
       xlab("Make of Car") + 
       ylab("Num of Accidents") + 
       ggtitle("Accidents by Make of Car")

The following is the graphic that our call to ggplot2 produces in R.

NewImage

At this point we have written and tested our R code and know that it works.

3. Create a user defined R function and store it in the Oracle Database

Our next step in the process is to create an in-database user defined R function. This is were we store R code in our Oracle Database and make this available as an R function. To create the user defined R function we can use some PL/SQL to define it, and then take our R code (see above) and in it.

BEGIN
   -- sys.rqScriptDrop('demo_ggpplot');
   sys.rqScriptCreate('demo_ggpplot', 
      'function(dat) {
         library(ggplot2)
         
         aggdata2 <- aggregate(dat$POLICYNUMBER,
                      by = list(MAKE = dat$MAKE),
                      FUN = length)

        g <-ggplot(data=aggdata2, aes(x=MAKE, y=x, fill=MAKE)) + geom_bar(color="black", stat="identity") +
                   xlab("Make of Car") + ylab("Num of Accidents") + ggtitle("Accidents by Make of Car")

        plot(g)
   }');
END;

We have to make a small addition to our R code. We need need to include a call to the plot function so that the image can be returned as a BLOB object. If you do not do this then the SQL query in step 4 will return no rows.

4. Write the SQL to call it

To call our defined R function we will need to use one of the ORE SQL API functions. In the following example we are using the rqTableEval function. The first parameter for this function passes in the data to be processed. In our case this is the data from the CLAIMS table. The second parameter is set to null. The third parameter is set to the output format and in our case we want this to be PNG. The fourth parameter is the name of the user defined R function.

select *
from table(rqTableEval( cursor(select * from claims),
                        null,
                        'PNG',
                        'demo_ggpplot'));                        

5. How to view the results

The SQL query in Step 4 above will return one row and this row will contain a column with a BLOB data type.

NewImage

The easiest way to view the graphic that is produced is to use SQL Developer. It has an inbuilt feature that allows you to display BLOB objects. All you need to do is to double click on the BLOB cell (under the column labeled IMAGE). A window will open called ‘View Value’. In this window click the ‘View As Image’ check box on the top right hand corner of the window. When you do the R ggplot2 graphic will be displayed.

NewImage

Yes the image is not 100% the same as the image produced in our R session. I will have another blog post that deals with this at a later date.

But, now you have written a SQL query, that calls R code to produce an R graphic (using ggplot2) of our data.

6. Now you can enhance the graphics (without changing your SQL)

What if you get bored with the bar chart and you want to change it to a different type of graphic? All you need to do is to change the relevant code in the user defined R function.

For example, if we want to change the graphic to a polar plot. The following is the PL/SQL code that re-defines the user defined R script.

BEGIN
   sys.rqScriptDrop('demo_ggpplot');
   sys.rqScriptCreate('demo_ggpplot', 
      'function(dat) {
         library(ggplot2)
         
         aggdata2 <- aggregate(dat$POLICYNUMBER,
                      by = list(MAKE = dat$MAKE),
                      FUN = length)

         n <- nrow(aggdata2)
         degrees <- 360/n

        aggdata2$MAKE_ID <- 1:nrow(aggdata2)

        g<- ggplot(data=aggdata2, aes(x=MAKE, y=x, fill=MAKE)) + geom_bar(color="black", stat="identity") +
               xlab("Make of Car") + ylab("Num of Accidents") + ggtitle("Accidents by Make of Car") + coord_polar(theta="x") 
        plot(g)
   }');
END;

We can use the exact same SQL query we defined in Step 4 above to call the next graphic.

NewImage

All done.

Now that was easy! Right?

I kind of is easy once you have been shown. There are a few challenges when working in-database user defined R functions and writing the SQL to call them. Most of the challenges are around the formatting of R code in the function and the syntax of the SQL statement to call it. With a bit of practice it does get easier.

7. Where/How can you use these graphics ?

Any application or program that can call and process a BLOB data type can display these images. For example, I’ve been able to include these graphics in applications developed in APEX.

googleVis R package for creating google charts in R

Posted on Updated on

I’ve recently come across the ‘googleVis’ R package. This allows you to create a variety of different (typical and standard) charts in R but with the look and feel of the charts we can get from a number of different Google sites.

I won’t bore you with some examples in the post but I’ll point you to a good tutorial on the various charts.

Here is the link to the mini-tutorial.

Before you can use the package you will need to install it. The simplest way is to run the following in your R session.

> install.packages("googleVis")

Depending on your version of R you may need to upgrade.

Here is a selection of some of the charts you can create, and there are many, many more.

NewImage

Some of you might be familiar with the presenting that Hans Rosling gives. Some of the same technology is behind these bubble charts from Google, as they bought the software years ago. Hans typically uses a data set that consists of GDP, Population and Life Expectancy for countries around the World. You too can use this same data set and is available from rdatamarket. The following R codes will extract this data set to you local R session and you can then use it as input to the various charts in the googleVis functions.

install.packages("rdatamarket")
library(rdatamarket)
dminit(NULL)

# Pull in life expectancy and population data
life_expectancy <- dmlist("15r2!hrp")
population <- dmlist("1cfl!r3d")

# Pull in the yearly GDP for each country
gdp <- dmlist("15c9!hd1")

# Load in the plyr package
library("plyr")

# Rename the Value for each dataset
names(gdp)[3] <- "GDP"

# Use plyr to join your three data frames into one: development 
gdp_life_exp <- join(gdp, life_expectancy)
names(gdp_life_exp)[4] <- "LifeExpectancy"
development <- join(gdp_life_exp, population)
names(development)[5] <- "Population"

Here is an example of the bubble chart using this data set.

NewImage

There are a few restrictions with using this package. All the results will be displayed in a web browser, so you need to make sure that this is possible. Some of the charts are require flash. Again you need to make sure you are the latest version and/or you many have restrictions in your workplace on using it.

Accessing the R datasets in ORE and SQL

Posted on Updated on

When you install R you also get a set of pre-compiled datasets. These are great for trying out many of the features that are available with R and all the new packages that are being produced on an almost daily basis.

The exact list of data sets available will depend on the version of R that you are using.

To get the list of available data sets in R you can run the following.

> library(help="datasets")

This command will list all the data sets that you can reference and start using immediately.

I’m currently running the latest version of Oracle R Distribution version 3.2. See the listing at the end of this blog post for the available data sets.

But are these data sets available to you if you are using Oracle R Enterprise (ORE)? The answer is Yes of course they are.

But are these accessible on the Oracle Database server? Yes they are, as you have R installed there and you can use ORE to access and use the data sets.

But how? how can I list what is on the Oracle Database server using R? Simple use the following ORE code to run an embedded R execution function using the ORE R API.

What? What does that mean? Using the R on your client machine, you can use ORE to send some R code to the Oracle Database server. The R code will be run on the Oracle Database server and the results will be returned to the client. The results contain the results from the server. Try the following code.

ore.doEval(function() library(help="datasets")) 

# let us create a functions for this code
myFn <- function() {library(help="datasets")}

# Now send this function to the DB server and run it there.
ore.doEval(myFn)

# create an R script in the Oracle Database that contains our R code
ore.scriptDrop("inDB_R_DemoData")
ore.scriptCreate("inDB_R_DemoData", myFn)
# Now run the R script, stored in the Oracle Database, on the Database server
#   and return the results to my client
ore.doEval(FUN.NAME="inDB_R_DemoData")

Simple, Right!

Yes it is. You have shown us how to do this in R using the ORE package. But what if I’m a SQL developer. Can I do this in SQL? Yes you can. Connect you your schema using SQL Developer/SQL*Plus/SQLcl or whatever tool you will be using to run SQL. Then run the following SQL.

select * 
from table(rqEval(null, 'XML', 'inDB_R_DemoData'));

This SQL code will return the results in XML format. You can parse this to extract and display the results and when you do you will get something like the following listing, which is exactly the same that is produced when you run the R code that I gave above.

So what this means is that evening if you have an empty schema with no data in it, and as long as you have the privileges to run embedded R execution, you actually have access to all these different data sets. You can use these to try our R using the ORE SQL APIs too.

		Information on package ‘datasets’

Description:

Package:       datasets
Version:       3.2.0
Priority:      base
Title:         The R Datasets Package
Author:        R Core Team and contributors worldwide
Maintainer:    R Core Team 
Description:   Base R datasets.
License:       Part of R 3.2.0
Built:         R 3.2.0; ; 2015-08-07 02:20:26 UTC; windows

Index:

AirPassengers           Monthly Airline Passenger Numbers 1949-1960
BJsales                 Sales Data with Leading Indicator
BOD                     Biochemical Oxygen Demand
CO2                     Carbon Dioxide Uptake in Grass Plants
ChickWeight             Weight versus age of chicks on different diets
DNase                   Elisa assay of DNase
EuStockMarkets          Daily Closing Prices of Major European Stock
                        Indices, 1991-1998
Formaldehyde            Determination of Formaldehyde
HairEyeColor            Hair and Eye Color of Statistics Students
Harman23.cor            Harman Example 2.3
Harman74.cor            Harman Example 7.4
Indometh                Pharmacokinetics of Indomethacin
InsectSprays            Effectiveness of Insect Sprays
JohnsonJohnson          Quarterly Earnings per Johnson & Johnson Share
LakeHuron               Level of Lake Huron 1875-1972
LifeCycleSavings        Intercountry Life-Cycle Savings Data
Loblolly                Growth of Loblolly pine trees
Nile                    Flow of the River Nile
Orange                  Growth of Orange Trees
OrchardSprays           Potency of Orchard Sprays
PlantGrowth             Results from an Experiment on Plant Growth
Puromycin               Reaction Velocity of an Enzymatic Reaction
Theoph                  Pharmacokinetics of Theophylline
Titanic                 Survival of passengers on the Titanic
ToothGrowth             The Effect of Vitamin C on Tooth Growth in
                        Guinea Pigs
UCBAdmissions           Student Admissions at UC Berkeley
UKDriverDeaths          Road Casualties in Great Britain 1969-84
UKLungDeaths            Monthly Deaths from Lung Diseases in the UK
UKgas                   UK Quarterly Gas Consumption
USAccDeaths             Accidental Deaths in the US 1973-1978
USArrests               Violent Crime Rates by US State
USJudgeRatings          Lawyers' Ratings of State Judges in the US
                        Superior Court
USPersonalExpenditure   Personal Expenditure Data
VADeaths                Death Rates in Virginia (1940)
WWWusage                Internet Usage per Minute
WorldPhones             The World's Telephones
ability.cov             Ability and Intelligence Tests
airmiles                Passenger Miles on Commercial US Airlines,
                        1937-1960
airquality              New York Air Quality Measurements
anscombe                Anscombe's Quartet of 'Identical' Simple Linear
                        Regressions
attenu                  The Joyner-Boore Attenuation Data
attitude                The Chatterjee-Price Attitude Data
austres                 Quarterly Time Series of the Number of
                        Australian Residents
beavers                 Body Temperature Series of Two Beavers
cars                    Speed and Stopping Distances of Cars
chickwts                Chicken Weights by Feed Type
co2                     Mauna Loa Atmospheric CO2 Concentration
crimtab                 Student's 3000 Criminals Data
datasets-package        The R Datasets Package
discoveries             Yearly Numbers of Important Discoveries
esoph                   Smoking, Alcohol and (O)esophageal Cancer
euro                    Conversion Rates of Euro Currencies
eurodist                Distances Between European Cities and Between
                        US Cities
faithful                Old Faithful Geyser Data
freeny                  Freeny's Revenue Data
infert                  Infertility after Spontaneous and Induced
                        Abortion
iris                    Edgar Anderson's Iris Data
islands                 Areas of the World's Major Landmasses
lh                      Luteinizing Hormone in Blood Samples
longley                 Longley's Economic Regression Data
lynx                    Annual Canadian Lynx trappings 1821-1934
morley                  Michelson Speed of Light Data
mtcars                  Motor Trend Car Road Tests
nhtemp                  Average Yearly Temperatures in New Haven
nottem                  Average Monthly Temperatures at Nottingham,
                        1920-1939
npk                     Classical N, P, K Factorial Experiment
occupationalStatus      Occupational Status of Fathers and their Sons
precip                  Annual Precipitation in US Cities
presidents              Quarterly Approval Ratings of US Presidents
pressure                Vapor Pressure of Mercury as a Function of
                        Temperature
quakes                  Locations of Earthquakes off Fiji
randu                   Random Numbers from Congruential Generator
                        RANDU
rivers                  Lengths of Major North American Rivers
rock                    Measurements on Petroleum Rock Samples
sleep                   Student's Sleep Data
stackloss               Brownlee's Stack Loss Plant Data
state                   US State Facts and Figures
sunspot.month           Monthly Sunspot Data, from 1749 to "Present"
sunspot.year            Yearly Sunspot Data, 1700-1988
sunspots                Monthly Sunspot Numbers, 1749-1983
swiss                   Swiss Fertility and Socioeconomic Indicators
                        (1888) Data
treering                Yearly Treering Data, -6000-1979
trees                   Girth, Height and Volume for Black Cherry Trees
uspop                   Populations Recorded by the US Census
volcano                 Topographic Information on Auckland's Maunga
                        Whau Volcano
warpbreaks              The Number of Breaks in Yarn during Weaving
women                   Average Heights and Weights for American Women