Reading Data from Oracle Table into Python Pandas – How long & Different arraysize

Posted on

Here are some results from a little testing I recent did on extracting data from an Oracle database and what effect the arraysize makes and which method might be the quickest.

The arraysize determines how many records will be retrieved in each each batch. When a query is issued to the database, the results are returned to the calling programme in batches of a certain size. Depending on the nature of the application and the number of records being retrieved, will determine the arraysize value. The value of this can have a dramatic effect on your query and application response times. Sometimes a small value works very well but sometimes you might need a larger value.

My test involved using an Oracle Database Cloud instance, using Python and the following values for the arraysize.

arraysize = (5, 50, 500, 1000, 2000, 3000, 4000, 5000) 

The first test was to see what effect these arraysizes have on retrieving all the data from a table. The in question has 73,668 records. So not a large table. The test loops through this list of values and fetches all the data, using the fetchall function (part of cx_Oracle), and then displays the time taken to retrieve the results.

# import the Oracle Python library
import cx_Oracle
import datetime
import pandas as pd
import numpy as np

# setting display width for outputs in PyCharm
desired_width = 280
pd.set_option('display.width', desired_width)

# define the login details
p_username = "************"
p_password = "************"
p_host = "************"
p_service = "************"
p_port = "1521"

print(' Testing the time to extract data from an Oracle Database.')
print('    using different approaches.')
# create the connection
con = cx_Oracle.connect(user=p_username, password=p_password, dsn=p_host+"/"+p_service+":"+p_port)

print(' Test 1: Extracting data using Cursor for different Array sizes')
print('    Array Size = 5, 50, 500, 1000, 2000, 3000, 4000, 5000')
print('   Starting test at : ',

beginTime =
cur_array_size = (5, 50, 500, 1000, 2000, 3000, 4000, 5000)
sql = 'select * from banking_marketing_data_balance_v'

for size in cur_array_size:
    startTime =
    cur = con.cursor()
    cur.arraysize = size
    results = cur.execute(sql).fetchall()
    print('      Time taken : array size = ', size, ' = ',, ' seconds,  num of records = ', len(results))

print('   Test 1: Time take = ',

And here are the results from this first test.

Starting test at :  2018-11-14 15:51:15.530002
      Time taken : array size =  5  =  0:36:31.855690  seconds,  num of records =  73668
      Time taken : array size =  50  =  0:05:32.444967  seconds,  num of records =  73668
      Time taken : array size =  500  =  0:00:40.757931  seconds,  num of records =  73668
      Time taken : array size =  1000  =  0:00:14.306910  seconds,  num of records =  73668
      Time taken : array size =  2000  =  0:00:10.182356  seconds,  num of records =  73668
      Time taken : array size =  3000  =  0:00:20.894687  seconds,  num of records =  73668
      Time taken : array size =  4000  =  0:00:07.843796  seconds,  num of records =  73668
      Time taken : array size =  5000  =  0:00:06.242697  seconds,  num of records =  73668

As you can see the variation in the results.

You may get different performance results based on your location, network connectivity and proximity of the database. I was at home (Ireland) using wifi and my database was located somewhere in USA. I ran the rest a number of times and the timings varied by +/- 15%, which is a lot!

When the data is retrieved in this manner you can process the data set in the returned results set. Or what is more traditional you will want to work with the data set as a panda. The next two test look at a couple of methods of querying the data and storing the result sets in a panda.

For these two test, I’ll set the arraysize = 3000. Let’s see what happens.

For the second test I’ll again use the fetchall() function to retrieve the data set. From that I extract the names of the columns and then create a panda combining the results data set and the column names.

startTime =
print('   Starting test at : ', startTime)
cur = con.cursor()
cur.arraysize = cur_array_size
results = cur.execute(sql).fetchall()
print('   Fetched ', len(results), ' in ',, ' seconds at ',
startTime2 =
col_names = []
for i in range(0, len(cur.description)):
print(' Fetched data & Created the list of Column names in ',, ' seconds at ',

The results from this are.

      Fetched  73668  in  0:00:07.778850  seconds at  2018-11-14 16:35:07.840910
      Fetched data & Created the list of Column names in  0:00:07.779043  seconds at  2018-11-14 16:35:07.841093
      Finished creating Dataframe in  0:00:07.975074  seconds at  2018-11-14 16:35:08.037134

Test 2: Total Time take =  0:00:07.975614

Now that was quick. Fetching the data set in just over 7.7788 seconds. Creating the column names as fractions of a millisecond, and then the final creation of the panda took approx 0.13 seconds.

For the third these I used the pandas library function called read_sql(). This function takes two inputs. The first is the query to be processed and the second the name of the database connection.

print(' Test 3: Test timing for read_sql into a dataframe')
cur_array_size = 3000
print('   will use arraysize = ', cur_array_size)
startTime =
print('   Starting test at : ', startTime)

df2 = pd.read_sql(sql, con)

print('      Finished creating Dataframe in ',, ' seconds at ',
# close the connection at end of experiments

and the results from this are.

   Test 3: Test timing for read_sql into a dataframe will use arraysize =  3000

   Starting test at :  2018-11-14 16:35:08.095189
      Finished creating Dataframe in  0:02:03.200411  seconds at  2018-11-14 16:37:11.295611

You can see that it took just over 2 minutes to create the panda data frame using the read_sql() function, compared to just under 8 seconds using the previous method.

It is important to test the various options for processing your data and find the one that works best in your environment. As with most languages there can be many ways to do the same thing. The challenge is to work out which one you should use.


Oracle and Python setup with cx_Oracle

Posted on Updated on

Is Python the new R?

Maybe, maybe not, but that I’m finding in recent months is more companies are asking me to use Python instead of R for some of my work.

In this blog post I will walk through the steps of setting up the Oracle driver for Python, called cx_Oracle. The documentation for this drive is good and detailed with plenty of examples available on GitHub. Hopefully there isn’t anything new in this post, but it is my experiences and what I did.

1. Install Oracle Client

The Python driver requires Oracle Client software to be installed. Go here, download and install. It’s a straightforward install. Make sure the directories are added to the search path.

2. Download and install cx_Oracle

You can use pip3 to do this.

pip3 install cx_Oracle

Collecting cx_Oracle
  Downloading cx_Oracle-6.1.tar.gz (232kB)
    100% |████████████████████████████████| 235kB 679kB/s
Building wheels for collected packages: cx-Oracle
  Running bdist_wheel for cx-Oracle ... done
  Stored in directory: /Users/brendan.tierney/Library/Caches/pip/wheels/0d/c4/b5/5a4d976432f3b045c3f019cbf6b5ba202b1cc4a36406c6c453
Successfully built cx-Oracle
Installing collected packages: cx-Oracle
Successfully installed cx-Oracle-6.1

3. Create a connection in Python

Now we can create a connection. When you see some text enclosed in angled brackets <>, you will need to enter your detailed for your schema and database server.

# import the Oracle Python library
import cx_Oracle

# define the login details
p_username = ""
p_password = ""
p_host = ""
p_service = ""
p_port = "1521"

# create the connection
con = cx_Oracle.connect(user=p_username, password=p_password, dsn=p_host+"/"+p_service+":"+p_port)

# an alternative way to create the connection
# con = cx_Oracle.connect('/@/:1521')

# print some details about the connection and the library
print("Database version:", con.version)
print("Oracle Python version:", cx_Oracle.version)

Database version:
Oracle Python version: 6.1

4. Query some data and return results to Python

In this example the query returns the list of tables in the schema.

# define a cursor to use with the connection
cur = con.cursor()
# execute a query returning the results to the cursor
cur.execute('select table_name from user_tables')
# for each row returned to the cursor, print the record
for row in cur:
    print("Table: ", row)

Table:  ('ODMR_CARS_DATA',)

Now list the Views available in the schema.

# define a second cursor
cur2 = con.cursor()
# return the list of Views in the schema to the cursor
cur2.execute('select view_name from user_views')
# display the list of Views
for result_name in cur2:
    print("View: ", result_name)


5. Query some data and return to a Panda in Python

Pandas are commonly used for storing, structuring and processing data in Python, using a data frame format. The following returns the results from a query and stores the results in a panda.

# in this example the results of a query are loaded into a Panda
# load the pandas library
import pandas as pd

# execute the query and return results into the panda called df
df = pd.read_sql_query("SELECT * from INSUR_CUST_LTV_SAMPLE", con)

# print the records returned by query and stored in panda

0     CU13388     LEIF   ARNOLD    MI    Midwest   M        PROF-2   
1     CU13386     ALVA   VERNON    OK    Midwest   M       PROF-18   
2      CU6607   HECTOR  SUMMERS    MI    Midwest   M  Veterinarian   
3      CU7331  PATRICK  GARRETT    CA       West   M       PROF-46   
4      CU2624  CAITLYN     LOVE    NY  NorthEast   F      Clerical   

0            No   70             0   ...                          0   
1            No   24             0   ...                          9   
2            No   30             1   ...                          2   
3            No   43             0   ...                          4   
4            No   27             1   ...                          4   

0                0            3            0               0   
1             3000            4            1               1   
2              980            4            1               3   
3                0            2            0               1   
4             5000            4            1               2   

0               2500              1                 0  17621.00   MEDIUM  
1               2500              1               450  22183.00     HIGH  
2                500              1               250  18805.25   MEDIUM  
3                800              1                 0  22574.75     HIGH  
4               3000              2              1500  17217.25   MEDIUM  

[5 rows x 31 columns]

6. Wrapping it up and closing things

Finally we need to wrap thing up and close our cursors and our connection to the database.

# close the cursors

# close the connection to the database

Useful links

cx_Oracle website

cx_Oracle documentation

cx_Oracle examples on GitHub

Watch out for more blog posts on using Python with Oracle, Oracle Data Mining and Oracle R Enterprise.