Machine Learning

Data Science (The MIT Press Essential Knowledge series) – available in English, Korean and Chinese

Posted on Updated on

Back in the middle of 2018 MIT Press published my Data Science book, co-written with John Kelleher. It book was published as part of their Essentials Series.

During the few months it was available in 2018 it became a best seller on Amazon, and one of the top best selling books for MIT Press. This happened again in 2019. Yes, two years running it has been a best seller!

2020 kicks off with the book being translated into Korean and Chinese. Here are the covers of these translated books.

The Japanese and Turkish translations will be available in a few months!

Go get the English version of the book on Amazon in print, Kindle and Audio formats.

https://amzn.to/2qC84KN

This book gives a concise introduction to the emerging field of data science, explaining its evolution, relation to machine learning, current uses, data infrastructure issues and ethical challenge the goal of data science is to improve decision making through the analysis of data. Today data science determines the ads we see online, the books and movies that are recommended to us online, which emails are filtered into our spam folders, even how much we pay for health insurance.

Go check it out.

Amazon.com.          Amazon.co.uk

Screenshot 2020-02-05 11.46.03

#GE2020 Analysing Party Manifestos using Python

Posted on

The general election is underway here in Ireland with polling day set for Saturday 8th February. All the politicians are out campaigning and every day the various parties are looking for publicity on whatever the popular topic is for that day. Each day is it a different topic.

Most of the political parties have not released their manifestos for the #GE2020 election (as of date of this post). I want to use some simple Python code to perform some analyse of their manifestos. As their new manifestos weren’t available (yet) I went looking for their manifestos from the previous general election. Michael Pidgeon has a website with party manifestos dating back to the early 1970s, and also has some from earlier elections. Check out his website.

I decided to look at manifestos from the 4 main political parties from the 2016 general election. Yes there are other manifestos available, and you can use the Python code, given below to analyse those, with only some minor edits required.

The end result of this simple analyse is a WordCloud showing the most commonly used words in their manifestos. This is graphical way to see what some of the main themes and emphasis are for each party, and also allows us to see some commonality between the parties.

Let’s begin with the Python code.

1 – Initial Setup

There are a number of Python Libraries available for processing PDF files. Not all of them worked on all of the Part Manifestos PDFs! It kind of depends on how these files were generated. In my case I used the pdfminer library, as it worked with all four manifestos. The common library PyPDF2 didn’t work with the Fine Gael manifesto document.

import io
import pdfminer
from pprint import pprint
from pdfminer.converter import TextConverter
from pdfminer.pdfinterp import PDFPageInterpreter
from pdfminer.pdfinterp import PDFResourceManager
from pdfminer.pdfpage import PDFPage

#directory were manifestos are located
wkDir = '.../General_Election_Ire/'

#define the names of the Manifesto PDF files & setup party flag
pdfFile = wkDir+'FGManifesto16_2.pdf'
party = 'FG'
#pdfFile = wkDir+'Fianna_Fail_GE_2016.pdf'
#party = 'FF'
#pdfFile = wkDir+'Labour_GE_2016.pdf'
#party = 'LB'
#pdfFile = wkDir+'Sinn_Fein_GE_2016.pdf'
#party = 'SF'

All of the following code will run for a given manifesto. Just comment in or out the manifesto you are interested in. The WordClouds for each are given below.

2 – Load the PDF File into Python

The following code loops through each page in the PDF file and extracts the text from that page.

I added some addition code to ignore pages containing the Irish Language. The Sinn Fein Manifesto contained a number of pages which were the Irish equivalent of the preceding pages in English. I didn’t want to have a mixture of languages in the final output.

SF_IrishPages = [14,15,16,17,18,19,20,21,22,23,24]
text = ""

pageCounter = 0
resource_manager = PDFResourceManager()
fake_file_handle = io.StringIO()
converter = TextConverter(resource_manager, fake_file_handle)
page_interpreter = PDFPageInterpreter(resource_manager, converter)

for page in PDFPage.get_pages(open(pdfFile,'rb'), caching=True, check_extractable=True):
    if (party == 'SF') and (pageCounter in SF_IrishPages):
        print(party+' - Not extracting page - Irish page', pageCounter)
    else:
        print(party+' - Extracting Page text', pageCounter)
        page_interpreter.process_page(page)

        text = fake_file_handle.getvalue()

    pageCounter += 1

print('Finished processing PDF document')
converter.close()
fake_file_handle.close()
FG - Extracting Page text 0
FG - Extracting Page text 1
FG - Extracting Page text 2
FG - Extracting Page text 3
FG - Extracting Page text 4
FG - Extracting Page text 5
...

3 – Tokenize the Words

The next step is to Tokenize the text. This breaks the text into individual words.

from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
tokens = []

tokens = word_tokenize(text)

print('Number of Pages =', pageCounter)
print('Number of Tokens =',len(tokens))
Number of Pages = 140
Number of Tokens = 66975

4 – Filter words, Remove Numbers & Punctuation

There will be a lot of things in the text that we don’t want included in the analyse. We want the text to only contain words. The following extracts the words and ignores numbers, punctuation, etc.

#converts to lower case, and removes punctuation and numbers
wordsFiltered = [tokens.lower() for tokens in tokens if tokens.isalpha()]
print(len(wordsFiltered))
print(wordsFiltered)
58198
['fine', 'gael', 'general', 'election', 'manifesto', 's', 'keep', 'the', 'recovery', 'going', 'gaelgeneral', 'election', 'manifesto', 'foreward', 'from', 'an', 'taoiseach', 'the', 'long', 'term', 'economic', 'three', 'steps', 'to', 'keep', 'the', 'recovery', 'going', 'agriculture', 'and', 'food', 'generational',
...

As you can see the number of tokens has reduced from 66,975 to 58,198.

5 – Setup Stop Words

Stop words are general words in a language that doesn’t contain any meanings and these can be removed from the data set. Python NLTK comes with a set of stop words defined for most languages.

#We initialize the stopwords variable which is a list of words like 
#"The", "I", "and", etc. that don't hold much value as keywords
stop_words = stopwords.words('english')
print(stop_words)
['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've", "you'll", "you'd", 'your', 'yours', 'yourself',
....

Additional stop words can be added to this list. I added the words listed below. Some of these you might expect to be in the stop word list, others are to remove certain words that appeared in the various manifestos that don’t have a lot of meaning. I also added the name of the parties  and some Irish words to the stop words list.

#some extra stop words are needed after examining the data and word cloud
#these are added
extra_stop_words = ['ireland','irish','ł','need', 'also', 'set', 'within', 'use', 'order', 'would', 'year', 'per', 'time', 'place', 'must', 'years', 'much', 'take','make','making','manifesto','ð','u','part','needs','next','keep','election', 'fine','gael', 'gaelgeneral', 'fianna', 'fáil','fail','labour', 'sinn', 'fein','féin','atá','go','le','ar','agus','na','ár','ag','haghaidh','téarnamh','bplean','page','two','number','cothromfor']
stop_words.extend(extra_stop_words)
print(stop_words)

Now remove these stop words from the list of tokens.

# remove stop words from tokenised data set
filtered_words = [word for word in wordsFiltered if word not in stop_words]
print(len(filtered_words))
print(filtered_words)
31038
['general', 'recovery', 'going', 'foreward', 'taoiseach', 'long', 'term', 'economic', 'three', 'steps', 'recovery', 'going', 'agriculture', 'food',

The number of tokens is reduced to 31,038

6 – Word Frequency Counts

Now calculate how frequently these words occur in the list of tokens.

#get the frequency of each word
from collections import Counter

# count frequencies
cnt = Counter()
for word in filtered_words:
cnt[word] += 1

print(cnt)
Counter({'new': 340, 'support': 249, 'work': 190, 'public': 186, 'government': 177, 'ensure': 177, 'plan': 176, 'continue': 168, 'local': 150, 
...

7 – WordCloud

We can use the word frequency counts to add emphasis to the WordCloud. The more frequently it occurs the larger it will appear in the WordCloud.

#create a word cloud using frequencies for emphasis 
from wordcloud import WordCloud
import matplotlib.pyplot as plt

wc = WordCloud(max_words=100, margin=9, background_color='white',
scale=3, relative_scaling = 0.5, width=500, height=400,
random_state=1).generate_from_frequencies(cnt)

plt.figure(figsize=(20,10))
plt.imshow(wc)
#plt.axis("off")
plt.show()

#Save the image in the img folder:
wc.to_file(wkDir+party+"_2016.png")

The last line of code saves the WordCloud image as a file in the directory where the manifestos are located.

8 – WordClouds for Each Party

Screenshot 2020-01-21 11.10.25

Remember these WordClouds are for the manifestos from the 2016 general election.

When the parties have released their manifestos for the 2020 general election, I’ll run them through this code and produce the WordClouds for 2020. It will be interesting to see the differences between the 2016 and 2020 manifesto WordClouds.

Machine Learning Evaluation Measures

Posted on Updated on

When developing machine learning models there is a long list of possible evaluation measures. On one hand this can be good as it gives us lots of insights into the models and be able to select the best model that meets the requirements. (BTW this is different to choosing the best model based on the evaluation measures!). On the other hand it can be very confusing what all of these mean as there can appear to be so many of them.  In this post I’ll look at some of these evolution measures.

I’m not going to go into the basic set of evaluation measures that come from the typical use of the Confusion Matrix, including True/False Positives, True/False Negatives, Accuracy, Miss-classification rate, Precision, Recall, Sensitivity and F1 score.

The following evaluation measures will be discussed:

  • R-Squared (R2)
  • Mean Squared Error (MSE)
  • Sum of Squared Error (SSE)
  • Root Mean Square (RMSE)

R-Squared (R²)

R-squared measures how well your data fits a regression line. It measures the variation of the predicted values, from the model, from that of the actual value. It is typically given as a percentage or in the range of Zero to One (although you can have negative values). It is also known as Coefficient of Determination. The higher the value for R² the better.

R² is always between 0 and 100%:

  • 0% indicates that the model explains none of the variability of the response data around its mean.
  • 100% indicates that the model explains all the variability of the response data around its mean.

r2

But R² cannot determine whether the coefficient estimates and predictions are biased

Mean Squared Error (MSE)

MSE  measures average squared error of our predictions. For each point, it calculates square difference between the predictions and the target and then average those values. The higher this value, the worse the model is.

Screenshot 2019-12-20 11.20.14

The larger the number the larger the error. Error in this case means the difference between the observed values and the predicted values. Square each difference, this ensures negative and positive values do not cancel each other out.

Sum of Squared Error (SSE)

SSE is the sum of the squared differences between each observation and its group’s mean.  It measures the overall difference between your data and the values predicted by your estimation model.

Screenshot 2019-12-20 11.28.40

Root Mean Square Error (RMSE) 

RMSE is just the square root of MSE. The square root is introduced to make scale of the errors to be the same as the scale of targets. As the square root of a variance, RMSE can be interpreted as the standard deviation of the unexplained variance. Lower values of RMSE indicate better fit. RMSE is a good measure of how accurately the model predicts the response.

 

 

Applying a Machine Learning Model in OAC

Posted on Updated on

There are a number of different tools and languages available for machine learning projects. One such tool is Oracle Analytics Cloud (OAC).  Check out my article for Oracle Magazine that takes you through the steps of using OAC to create a Machine Learning workflow/dataflow.

Screenshot 2019-12-19 14.31.24

Oracle Analytics Cloud provides a single unified solution for analyzing data and delivering analytics solutions to businesses. Additionally, it provides functionality for processing data, allowing for data transformations, data cleaning, and data integration. Oracle Analytics Cloud also enables you to build a machine learning workflow, from loading, cleaning, and transforming data and creating a machine learning model to evaluating the model and applying it to new data—without the need to write a line of code. My Oracle Magazine article takes you through the various tasks for using Oracle Analytics Cloud to build a machine learning workflow.

That article covers the various steps with creating a machine learning model. This post will bring you through the steps of using that model to score/label new data.

In the Data Flows screen (accessed via Data->Data Flows) click on Create. We are going to create a new Data Flow to process the scoring/labeling of new data.

Screenshot 2019-12-19 15.08.39

Select Data Flow from the pop-up menu. The ‘Add Data Set’ window will open listing your available data sets. In my example, I’m going to use the same data set that I used in the Oracle Magazine article to build the model.  Click on the data set and then click on the Add button.

Screenshot 2019-12-19 15.14.44

The initial Data Flow will be created with the node for the Data Set. The screen will display all the attributes for the data set and from this you can select what attributes to include or remove. For example, if you want a subset of the attributes to be used as input to the machine learning model, you can select these attributes at this stage. These can be adjusted at a later stages, but the data flow will need to be re-run to pick up these changes.

Screenshot 2019-12-19 15.17.48

Next step is to create the Apply Model node. To add this to the data flow click on the small plus symbol to the right of the Data Node. This will pop open a window from which you will need to select the Apply Model.

Screenshot 2019-12-19 15.22.40

A pop-up window will appear listing the various machine learning models that exist in your OAC environment. Select the model you want to use and click the Ok button.

Screenshot 2019-12-19 15.24.42

Screenshot 2019-12-19 15.25.22

The next node to add to the data flow is to save the results/outputs from the Apply Model node. Click on the small plus icon to the right of the Apply Model node and select Save Results from the popup window.

Screenshot 2019-12-19 15.27.50.png

We now have a completed data flow. But before you finish edit the Save Data node to give a name for the Save Data Set, and you can edit what attributes/features you want in the result set.

Screenshot 2019-12-19 15.30.25.png

You can now save and run the Data Flow, and view the outputs from applying the machine learning model. The saved data set results can be viewed in the Data menu.

Screenshot 2019-12-19 15.35.11

 

Always watching, always listening. Be careful with your data

Posted on Updated on

The saying ‘Big Brother is Watching’ has been around a long time and typically gets associated with government organisations. But over the past few years we have a few new Big Brothers appearing. These are in the form of Google and Facebook and a few others.

These companies gather lots and lots. Some companies gather enormous amounts of data. This data will include details of your interactions with the companies through various websites, applications, etc. But some are gathering data in ways that you might not be aware. For example, take this following video. Data is being gathered about what you do and where you go even if you have disconnected your phone.

Did you know this kind of data was being gathered about you?

Just think of what they could be doing with that data, that data you didn’t know they were gathering about you. Companies like these generate huge amounts of income from selling advertisements and the more data they have about individuals the more the can understand what they might be interested. The generate customer profiles and sell expensive advertising based on having these very detailed customer profiles.

But it doesn’t stop there. Recently Google bought Fitbit. Just think about what they can do now. Combining their existing profiles of you as a person with you activities throughout every day, week and month. Just think about how various health and insurance companies would love to have this data. Yes they would and companies like Google would be able to charge these companies even more money for this level of detail on individuals/customers.

But it doesn’t stop there. There have been lots of reports of various apps sharing health and other related data with various companies, without their customers being aware this is happening.

What about Google Assistant? In a recent article by MIT Technology Review title Inside Amazon’s plan for Alexa to run your entire life, they discuss how Alexa can be used to control virtually everything. In this article Alexa’s cheif scientist say “plan is for the voice assistant to move from passive to proactive interactions. Rather than wait for and respond to requests, Alexa will anticipate what the user might want. The idea is to turn Alexa into an omnipresent companion that actively shapes and orchestrates your life. This will require Alexa to get to know you better than ever before.”  When combined with other products this will allow “these new products let Alexa listen to and log data about a dramatically larger portion of your life“.

Just imagine if Google did the same with their Google Assistant!  Big Brother isn’t just Watching, they are also Listening!

There has been some recent report of Google looking to get into Banking by offering checking accounts. The project, code-named Cache, is due to launch in 2020. Google has partnered with Citigroup and a credit union at Stanford University, which will administer the accounts. Users will be able to access their accounts through Google’s digital payment platform, Google Pay.

And there are the reports of Google having access to the health records of over 50 million people. In addition to this, Google has signed a deal with Ascension, the second-largest hospital system in the US, to collect and analyze millions of Americans’ personal health data. Ascension operates in 150 hospitals in 21 states.

What if they also had access to your banking details and spending habits? Google is looking at different options to extend financial products from the google pay into more main stream banking. There has been some recent report of them looking at offering current accounts.

I won’t go discussing their attempts at Ethics and their various (failed) attempts at establishing and Ethics Advisory Board. This has been well documented elsewhere.

Things are getting a bit scary and the saying ‘Big Brother is Watching You’, is very, very true.

In the ever increasing connected world, all of us have a responsibility to know what data companies are gathering on us. We need to decide how comfortable we are with this and if you aren’t then you need to take steps to ensure you protect yourself. Maybe part of this protection requires us to become less connected, stop using some apps, turn off more notification, turn off updates, turn off tracking, etc

While taking each product or offering individually, it may seem ok to us for Google and other companies to offer such services and to analyze our data to provide a better service. But for most people the issues arise when each of these products start to be combined. By doing this they get to have greater access and understanding our our data and our behaviors. What role does (digital) ethics play in all of this? This is something for the company and the employees to decide where things should stop. But when/how do you decide this? when do you/they know things have gone too far? how can you undo some of this work to go back to an acceptable level? what is an acceptable level and how do you define this?

As yo can see there are lots of things to consider and a vital component is the role of (digital) ethics. All organizations who process and analyze data need to have an ethics board and ethics needs to be a core part of every project. To support this everyone needs more training and awareness of ethics and what is acceptable or not.

Demographics vs Psychographics for Machine Learning

Posted on Updated on

When preparing data for data science, data mining or machine learning projects you will create a data set that describes the various characteristics of the subject or case record. Each attribute will contain some descriptive information about the subject and is related to the target variable in some way.

In addition to these attributes, the data set will be enriched with various other internal/external data to complete the data set.

Some of the attributes in the data set can be grouped under the heading of Demographics. Demographic data contains attributes that explain or describe the person or event each case record is focused on. For example, if the subject of the case record is based on Customer data, this is the “Who” the demographic data (and features/attributes) will be about. Examples of demographic data include:

  • Age range
  • Marital status
  • Number of children
  • Household income
  • Occupation
  • Educational level

These features/attributes are typically readily available within your data sources and if they aren’t then these name be available from a purchased data set.

Additional feature engineering methods are used to generate new features/attributes that express meaning is different ways. This can be done by combining features in different ways, binning, dimensionality reduction, discretization, various data transformations, etc. The list can go on.

The aim of all of this is to enrich the data set to include more descriptive data about the subject. This enriched data set will then be used by the machine learning algorithms to find the hidden patterns in the data. The richer and descriptive the data set is the greater the likelihood of the algorithms in detecting the various relationships between the features and their values. These relationships will then be included in the created/generated model.

Another approach to consider when creating and enriching your data set is move beyond the descriptive features typically associated with Demographic data, to include Pyschographic data.

Psychographic data is a variation on demographic data where the feature are about describing the habits of the subject or customer.  Demographics focus on the “who” while psycographics focus on the “why”. For example, a common problem with data sets is that they describe subjects/people who have things in common. In such scenarios we want to understand them at a deeper level. Psycographics allows us to do this. Examples of Psycographics include:

  • Lifestyle activities
  • Evening activities
  • Purchasing interests – quality over economy,  how environmentally concerned are you
  • How happy are you with work, family, etc
  • Social activities and changes in these
  • What attitudes you have for certain topic areas
  • What are your principles and beliefs

The above gives a far deeper insight into the subject/person and helps to differentiate each subject/person from each other, when there is a high similarity between all subjects in the data set. For example, demographic information might tell you something about a person’s age, but psychographic information will tell you that the person is just starting a family and is in the market for baby products.

I’ll close with this. Consider the various types of data gathering that companies like Google, Facebook, etc perform. They gather lots of different types of data about individuals. This allows them to build up a complete and extensive profile of all activities for individuals. They can use this to deliver more accurate marketing and advertising. For example, Google gathers data about what places to visit throughout a data, they gather all your search results, and lots of other activities. They can do a lot with this data. but now they own Fitbit. Think about what they can do with that data and particularly when combined with all the other data they have about you. What if they had access to your medical records too!  Go Google this ! You will find articles about them now having access to your health records. Again combine all of the data from these different data sources. How valuable is that data?

 

Oracle ADW how to load new OML notebooks

Posted on Updated on

Oracle Autonomous Database (ADW) has been out a while now and have had several, behind the scenes, improvements and new/additional features added.

If you have used the Oracle Machine Learning (OML) component of ADW you will have seen the various sample OML Notebooks that come pre-loaded. These are easy to open, use and to try out the various OML features.

Screenshot 2019-07-29 13.07.01

The above image shows the top part of the login screen for OML. To see the available sample notebooks click on the Examples icon. When you do, you will get the following sample OML Notebooks.

Screenshot 2019-07-29 13.08.44

But what if you have a notebook you have used elsewhere. These can be exported in json format and loaded as a new notebook in OML.

To load a new notebook into OML, select the icon (three horizontal line) on the top left hand corner of the screen. Then select Notebooks from the menu.

Screenshot 2019-07-29 13.11.41           Screenshot 2019-07-29 13.21.07

Screenshot 2019-07-29 13.21.49

Then select the Import button located at the top of the Notebooks screen. This will open a File window, where you can select the json file from your file system.

Screenshot 2019-07-29 13.24.58

A couple of seconds later the notebook will be available and listed along side any other notebooks you may have created.

Screenshot 2019-07-29 13.26.13

All done!

You have now imported a new notebook into OML and can now use it to process your data and perform machine learning using the in-database features.