Machine Learning

Machine Learning with Go Lang

Posted on Updated on

Recently I’ve been having a number of conversations with people in several countries about using Go Lang for machine learning. Most of these people have been struggling with using Python for machine learning and are looking for an alternative that will give them better performance. We have been experimenting with C++ and Go Lang to see what the performance differences are. Most of these are with the execution of the ML code. This is great and everyone is very happy with execution timings, compared to Python.

But, there is a flip side to this. Although we have faster execution timings, there is a down side in that the coding effort is higher, with more lines of code and fewer libraries/packages to support the various ML tasks. But most of these can be easily coded ourselves .

We also looked at some frameworks for converting ML models developed in one language but deployed in production using a different language. More on that in another post.

Overall the extra development work was considered worthwhile for the performance improvement and deployment gains.

Go Lang doesn’t really come with it’s own set of libraries/packages for ML, but those have a number of these that can be used to code up the necessary functions we need for our everyday ML needs.

But are there any Go Lang libraries/packages developed for ML, just like we have for the R Language, etc?  The simple answer is YES we have. But the number of these is small in comparison to R and Python. Both of these languages are interpreted languages. But those available for Go are slowly growing.

Here is list of the Go Lang libraries/packages that we examined and evaluated for these projects. Some are available from the Go Lang website/wiki and others are available on Github.

  • Anna – Artificial Neural Network Aspiration, aims to be self-learning and self-improving software.
  • bayesian – A naive bayes classifier.
  • Dialex – Dialex is a smart pipe that unscrambles text and makes it machine-readable.
  • Cloudforest – Ensembles of decision trees
  • ctw – Context Tree Weighting and Rissanen-Langdon Arithmetic Coding
  • eaopt – An evolutionary optimization library.
  • evo – a framework for implementing evolutionary algorithms in Go.
  • gobrain – Neural Networks
  • Go Learn – Machine Learning for Go
  • go-algs/maxflow Maxflow (graph-cuts) energy minimization library.
  • go-graph – Graph library for Go/Golang language
  • go-galib – Genetic algorithms.
  • go-pr – Pattern recognition package in Go lang
  • golinear – Linear SVM and logistic regression.
  • go-mind – A neural network library built in Go
  • go_ml – Linear Regression, Logistic Regression, Neural Networks, Collaborative Filtering, Gaussian Multivariate Distribution.
  • go-ml-transpiler – An open source Go transpiler for machine learning models.
  • go-mxnet-predictor – Go binding for MXNet c_predict_api to do inference with pre-trained model.
  • gorgonia – Neural network primitives library (like Theano or Tensorflow but for Go)
  • go-porterstemmer – An efficient native Go clean room implementation of the Porter Stemming algorithm.
  • go-pr – Gaussian classifier.
  • ntmNeural Turing Machines implementation
  • paicehusk – Go implementation of the Paice/Husk Stemmer
  • RF – Random forests implementation in Go
  • tfgo – Tensorflow + Go, the gopher way.

 

Advertisements

Machine Learning Tools and Workbenches

Posted on Updated on

The following is a list of the most commonly used tools and workbenches for machine learning. These are specific to machine learning only. This list does not include any library or frameworks. These are tools and workbenches only. Most offering machine learning tools will include the following features:

  • Easy drag and drop capabilities
  • Data collection
  • Data preparation and cleaning
  • Model building
  • Data Visualization
  • Model Deployment
  • Integration with other tools and languages

As more and more organizations implement machine learning, there are two core aims they want to achieve.

  1. Employee Productivity: Who wants to spend days or weeks writing mundane code to load data, clean data, etc etc etc. No one wants to do this and especially employers don’t want their staff wasting time on this. Instead they are happy to invest in tools and workbenches where a lot or most or all of these mundane tasks are automated for you. You can not concentrate on the important tasks of adding value to your organisation. This saves money, improves employee productivity and employee value.
  2. Integration with Technical Architecture: Many of these tools and workbenches allow for easy integration with the technical architecture and thereby allowing easy and quick integration of machine learning withe the day to day activities of the organization. This saves money, improves employee productivity and employee value.

SAS

SAS software has been around for every and is the great grand-daddy of analytics and machine learning. They have built a large number of machine learning tools and solutions built upon these for various industries. Their core machine learning tools include SAS Enterprise Miner and SAS Visual Data Mining and Machine Learning.

Microsoft

Microsoft have been improving their Machine Learning offering over the years and most of this is based on the Azure cloud platform with Microsoft Azure Machine Learning Studio and Azure Databricks.

SAP

SAP Leonardo is a cloud based platform for machine learning and supports tight integration with other SAP software.

Oracle

Oracle have a number of machine learning tools and supports for the main machine learning languages. They have built a large number of applications (both cloud and on-premises) with in-built machine learning. Their main tools for machine learning include Oracle Data Miner, Oracle Machine Learning and Oracle Analytics (OAC or DVD versions)

Cloudera

If you work with hadoop and big data then you are probably using Cloudera in some way. Cloudera have hired Hilary Mason as their GM of ML. By taking an “AI factory” approach to turning data into decisions, you can make the process of building, scaling, and deploying enterprise ML and AI solutions automated, repeatable, and predictable—boring even. Cloudera Data Science Workbench is their solution.

Screenshot 2019-04-17 13.10.46

IBM

IBM have a number of machine learning tools, one of them being a long standing member of the machine learning community, SPSS Modeler. Other machine learning tools include Watson Studio, IBM Machine Learning for z/OS, and IBM Watson Explorer.

Google

Google have a large number of machine learning solutions including everything from traditional machine learning, into NLP, in Image processing, Video processing, etc. It’s a long list. Many of these come with various APIs to access these features. Most of these revolve around their Google AI Cloud offering. But sticking with the tools and workbenches we have AI Platform Notebooks, Kubeflow, and BigQuery ML.

TensorBoard

TensorBoard is a suite of tools for graphical representation of different aspects and stages of machine learning in TensorFlow.

Amazon

A bit like Goolge, Amazon has a large number of solutions for machine learning and AI, and most of these are available via an API or some cloud service. Amazon SageMaker is their main service.

Looker

Looker connects directly with Google BQML reduces additional complexity for data scientists by eliminating the need to move outputs of predictive models back into the database for use, while also increases the time-to-value for business users, allowing them to operationalize the outputs of predictive metrics to make better decisions every day.

Weka

Weka has been around for a long time and still popular in some research groups. Weka is a collection of machine learning algorithms for data mining tasks. It contains tools for data preparation, classification, regression, clustering, association rules mining, and visualization.

RapidMiner

RapidMiner Studio has been around for a long time and is one of the few more visual workflow tools (that everyone else should be doing).

Databricks

From the people who created Spark, we have another notebook solution for your machine learning projects called Databricks Workbench.

KNIME

KNIME Analytics Platform is the open source software for creating data science applications and services.

Dataiku

Dataiki Data Science (DSS) is a collaborative data science software workflow platform enabling data exploration, prototyping and delivery of analytical and machine learning solutions.

 

I’ve not included the tools like R Studio and Notebooks in this list as they don’t really address the aims listed above. But you will notice a lot of the above solutions are really Jupyter Notebooks. Most of these vendors have a long way to go to make the tasks of machine learning boring.

This list does not cover all available tools and workbenches, but it does list the most common one you will come across.

Data Sets for Analytics

Posted on Updated on

When working with analytics, in whatever flavor, one of the key things you need is some data. But data comes in many different shapes and sizes, but where can you get some useful data, be it transactional, time-series, meta-data, analytical, master, categorical, numeric, regression, clustering, etc.

Many of the popular analytics languages have some data sets built into them. For example the R language comes pre-loaded with data sets and these can be accessed using

data()

but many of the R packages also come with data sets.

Similarly if you are using Python, it comes with some pre-loaded data sets and similarly many of the Python libraries have data sets build into them. For example scikit learn.

from sklearn import datasets

But where else can you get data sets. There are lots and lots of website available with data sets and the list could be very long. The following is a list of, what I consider, the websites with the best data sets.

Kaggle

Amazon Open Data

UCI Machine Learning Repository

Google Search Engine

Google Open Images Data

Google Fiance

Microsoft Open Data

Awesome Public Datasets Collection

EU Open Data

US Government Data

US Census Bureau

Ireland Open Data

Northern Ireland Public Open Data

UK Open Data

Image Processing Data

Carnegie Mellon University Data Sets

World Bank Open Data

IMF Open Data

Movie Reviews Data Set

Amazon Reviews

Amazon public data sets

IMDb Datasets

Time Series Forecasting in Oracle – Part 1

Posted on

 

Time-series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. In this blog post I’ll introduce what time-series analysis is, the different types of time-series analysis and introduce how you can do this using SQL and PL/SQL in Oracle Database. I’ll have additional blog posts giving more detailed examples of Oracle functions and how they can be used for different time-series data problems.

Time-series forecasting is the use of a model to predict future values based on previously observed/historical values. It is a form of regression analysis with additions to facilitate trends, seasonal effects and various other combinations.

Screenshot 2019-04-13 12.59.56

Time-series forecasting is not an exact science but instead consists of a set of statistical tools and techniques that support human judgment and intuition, and only forms part of a solution. It can be used to automate the monitoring and control of data flows and can then indicate certain trends, alerts, rescheduling, etc., as in most business scenarios it is used for predict some future customer demand and/or products or services needs.

Typical application areas of Time-series forecasting include:

  • Operations management: forecast of product sales; demand for services
  • Marketing: forecast of sales response to advertisement procedures, new promotions etc.
  • Finance & Risk management: forecast returns from investments
  • Economics: forecast of major economic variables, e.g. GDP, population growth, unemployment rates, inflation; useful for monetary & fiscal policy; budgeting plans & decisions
  • Industrial Process Control: forecasts of the quality characteristics of a production process
  • Demography: forecast of population; of demographic events (deaths, births, migration); useful for policy planning

When working with time-series data we are looking for a pattern or trend in the data. What we want to achieve is the find a way to model this pattern/trend and to then project this onto our data and into the future. The graphs in the following image illustrate examples of the different kinds of scenarios we want to model.

Most time-series data sets will have one or more of the following components:

  • Seasonal: Regularly occurring, systematic variation in a time series according to the time of year.
  • Trend: The tendency of a variable to grow over time, either positively or negatively.
  • Cycle: Cyclical patterns in a time series which are generally irregular in depth and duration. Such cycles often correspond to periods of economic expansion or contraction.  Also know as the business cycle. 
  • Irregular: The Unexplained variation in a time series.

When approaching time-series problems you will use a combination of visualizations and time-series forecasting methods to examine the data and to build a suitable model. This is where the skills and experience of the data scientist becomes very important.

Oracle provided a algorithm to support time-series analysis in Oracle 18c. This function is called Exponential Smoothing. This algorithm allows for a number of different types of time-series data and patterns, and provides a wide range of statistical measures to support the analysis and predictions, in a similar way to Holt-Winters.

Screenshot 2019-04-15 11.57.40

The first parameter for the Exponential Smoothing function is the name of the model to use. Oracle provides a comprehensive list of models and these are listed in the following table.

Screenshot 2019-04-15 11.57.40

Check out my other blog posts on performing time-series analysis using the Exponential Smoothing function in Oracle Database. These will give more detailed examples of how the Oracle time-series functions, using the Exponential Smoothing algorithm, can be used for different time-series data problems. I’ll also look at example of the different configurations.

Data Normalization in Oracle Data Mining

Posted on Updated on

Normalization is the process of scaling continuous values down to a specific range, often between zero and one. Normalization transforms each numerical value by subtracting a number, called the shift, and dividing the result by another number called the scale. The normalization techniques include:

  • Min-Max Normalization : There is where the normalization is based on the using the minimum value for the shift and the (maximum-minimum) for the scale.
  • Scale Normalization : This is where the normalization is based on zero being used for the shift and the value calculated using max[abs(max), abs(min)] being used for the scale
  • Z-Score Normalization : This is where the normalization is based on using the mean value for the shift and the standard deviation for the scale.

When using Automatic Data Processing the normalization functions are used. But sometimes you may want to process the data is a more explicit manner. To do so you can use the various normalization function. To use these there is a three stage process. The first stage involves the creation of a table that will contain the normalization transformation data. The second stage applies the normalization procedures to your data source, defines the normalization required and inserts the required transformation data  into the table create during the first stage. The third stage involves the defining of a view that applies the normalization transformations to your data source and displays the output via a database view. The following example illustrates how you can normalize the AGE and YRS_RESIDENCE attributes. The input data source will be the view that was created as the output of the previous transformation (MINING_DATA_V_2). This is passed on the original MINING_DATA_BUILD_V data set. The final output from this transformation step and all the other data transformation steps is MINING_DATA_READY_V.

BEGIN
   -- Clean-up : Drop the previously created tables
   BEGIN
      execute immediate 'drop table TRANSFORM_NORMALIZE';
   EXCEPTION
      WHEN others THEN
         null;
   END;

   -- Stage 1 : Create the table for the transformations
   -- Perform normalization for: AGE and YRS_RESIDENCE
   dbms_data_mining_transform.CREATE_NORM_LIN (
      norm_table_name => 'MINING_DATA_NORMALIZE');       

   -- Step 2 : Insert the normalization data into the table
   dbms_data_mining_transform.INSERT_NORM_LIN_MINMAX (
      norm_table_name => 'MINING_DATA_NORMALIZE',
      data_table_name => 'MINING_DATA_V_2',
      exclude_list    => DBMS_DATA_MINING_TRANSFORM.COLUMN_LIST (
                         'affinity_card',
                         'bookkeeping_application',
                         'bulk_pack_diskettes',
                         'cust_id',
                         'flat_panel_monitor',
                         'home_theater_package',
                         'os_doc_set_kanji',
                         'printer_supplies',
                         'y_box_games'));

   -- Stage 3 : Create the view with the transformed data
   DBMS_DATA_MINING_TRANSFORM.XFORM_NORM_LIN (
      norm_table_name => 'MINING_DATA_NORMALIZE',
      data_table_name => 'MINING_DATA_V_2',
      xform_view_name => 'MINING_DATA_READY_V');

END;
/

The above example performs normalization based on the Minimum-Maximum values of the variables/columns. The other normalization functions are:

INSERT_NORM_LIN_SCALE Inserts linear scale normalization definitions in a transformation definition table.
INSERT_NORM_LIN_ZSCORE Inserts linear zscore normalization definitions in a transformation definition table.

 

HiveMall: Docker image setup

Posted on Updated on

In a previous blog post I introduced HiveMall as a SQL based machine learning language available for Hadoop and integrated with Hive.

If you have your own Hadoop/Big Data environment, I provided the installation instructions for Hivemall, in that blog post

An alternative is to use Docker. There is a HiveMall Docker image available. A little warning before using this image. It isn’t updated with the latest release but seems to get updated twice a year. Although you may not be running the latest version of HiveMall, you will have a working environment that will have almost all the functionality, bar a few minor new features and bug fixes.

To get started, you need to make sure you have Docker running on your machine and you have logged into your account. The docker image is available from Docker Hub. Take note of the version number for the latest version of the docker image. In this example it is 20180924

Screenshot 2019-03-04 10.53.57

Open a terminal window and run the following command. This will download and extract all the image files.

docker pull hivemall/latest:20180924

Screenshot 2019-03-04 10.51.34

Until everything is completed.

Screenshot 2019-03-04 11.01.40

This docker image has HDFS, Yarn and MapReduce installed and running. This will require the exposing of the ports for these services 8088, 50070 and 19888.

To start the HiveMall docker image run

docker run -p 8088:8088 -p 50070:50070 -p 19888:19888 -it hivemall/latest:20180924

Consider creating a shell script for this, to make it easier each time you want to run the image.

Screenshot 2019-03-04 11.15.04

Now seed Hive with some data. The typical example uses the IRIS data set.  Run the following command to do this. This script downloads the IRIS data set, creates a number directories and then creates an external table, in Hive, to point to the IRIS data set.

cd $HOME && ./bin/prepare_iris.sh

Screenshot 2019-03-04 11.20.49

Now open Hive and list the databases.

hive -S
hive> show databases;
OK
default
iris
Time taken: 0.131 seconds, Fetched: 2 row(s)

Connect to the IRIS database and list the tables within it.

hive> use iris;
hive> show tables;
iris_raw

Now query the data (150 records)

hive> select * from iris_raw;
1 Iris-setosa [5.1,3.5,1.4,0.2]
2 Iris-setosa [4.9,3.0,1.4,0.2]
3 Iris-setosa [4.7,3.2,1.3,0.2]
4 Iris-setosa [4.6,3.1,1.5,0.2]
5 Iris-setosa [5.0,3.6,1.4,0.2]
6 Iris-setosa [5.4,3.9,1.7,0.4]
7 Iris-setosa [4.6,3.4,1.4,0.3]
8 Iris-setosa [5.0,3.4,1.5,0.2]
9 Iris-setosa [4.4,2.9,1.4,0.2]
10 Iris-setosa [4.9,3.1,1.5,0.1]
11 Iris-setosa [5.4,3.7,1.5,0.2]
12 Iris-setosa [4.8,3.4,1.6,0.2]
13 Iris-setosa [4.8,3.0,1.4,0.1
...

Find the min and max values for each feature.

hive> select 
    > min(features[0]), max(features[0]),
    > min(features[1]), max(features[1]),
    > min(features[2]), max(features[2]),
    > min(features[3]), max(features[3])
    > from
    > iris_raw;

4.3  7.9  2.0  4.4  1.0  6.9  0.1  2.5

You are now up and running with HiveMall on Docker.

HiveML : Using SQL for ML on Big Data

Posted on Updated on

It is widely recognised that SQL is one of the core languages that every data scientist needs to know. Not just know but know really well. If you are going to be working with data (big or small) you are going to use SQL to access the data. You may use some other tools and languages as part of your data science role, but for processing data SQL is king.

During the era of big data and hadoop it was all about moving the code to where the data was located. Over time we have seem a number of different languages and approaches being put forward to allow us to process the data in these big environments. One of the most common one is Spark. As with all languages there can be a large learning curve, and as newer languages become popular, the need to change and learn new languages is becoming a lot more frequent.

We have seen many of the main stream database vendors including machine learning in their databases, thereby allowing users to use machine learning using SQL. In the big data world there has been many attempts to do this, to building some SQL interfaces for machine learning in a big data environment.

One such (newer) SQL machine learning engine is called HiveMall. This will allow anyone with a basic level knowledge of SQL to quickly learn machine learning. Apache Hivemall is built to be a scalable machine learning library that runs on Apache Hive, Apache Spark, and Apache Pig.

Screenshot 2019-02-16 09.46.39

Hivemall is currently at incubator stage under Apache and version 0.6 was released in December 2018.

I’ve a number of big data/hadoop environments in my home lab and build on a couple of cloud vendors (Oracle and AWS). I’ve completed the installation of Hivemall easily on my Oracle BigDataLite VM and my own custom build Hadoop environment on Oracle cloud. A few simple commands you will have Hivemall up and running. Initially installed for just Hive and then updated to use Spark.

Hivemall expands the analytical functions available in Hive, as well as providing data preparation and the typical range of machine learning functions that are necessary for 97+% of all machine learning use cases.

Download the hivemall-core-xxx-with-dependencies.jar file

# Setup Your Environment $HOME/.hiverc
add jar /home/myui/tmp/hivemall-core-xxx-with-dependencies.jar; 
source /home/myui/tmp/define-all.hive;

This automatically loads all Hivemall functions every time you start a Hive session

# Create a directory in HDFS for the JAR 
hadoop fs -mkdir -p /apps/hivemall 
hdfs dfs -chmod -R 777 /apps/hivemall 
cp hivemall-core-0.4.2-rc.2-with-dependencies.jar hivemall-with-dependencies.jar 
hdfs dfs -put hivemall-with-dependencies.jar /apps/hivemall/ 
hdfs dfs -put hivemall-with-dependencies.jar /apps/hive/warehouse

You might want to create a new DB in Hive for your Hivemall work.

CREATE DATABASE IF NOT EXISTS hivemall;
USE hivemall;

Then list all the Hivemall functions

show functions "hivemall.*";

+-----------------------------------------+--+
| tab_name                                |
+-----------------------------------------+--+
| hivemall.add_bias                       |
| hivemall.add_feature_index              |
| hivemall.amplify                        |
| hivemall.angular_distance               |
| hivemall.angular_similarity             |
...

Hivemall for ML using SQL is now up and running. Next step is to do try out the various analytical and ML functions.