Data Science

Irish Whiskey Distilleries Data Set

Posted on Updated on

I’ve been building some Irish Whiskey data sets, and the first of these data sets contains details of all the Whiskey Distilleries in Ireland. This page contains the following:

  • Table describing the attributes/features of the data set
  • Data set, in a scroll able region
  • Download data set in different formats
  • Map of the Distilleries
  • Subscribe to Twitter List containing these Distilleries, and some Twitter Hash Tags
  • How to send me updates, corrections and details of Distilleries I’ve missed

If you use this data set (and my other data sets) make sure to add a reference back to data set webpage. Let me know if you use the data set is an interesting way, share the details with me and I’ll share it on my blog and social media for you.

This data set will have it’s own Irish Distilleries webpage and all updates to the data set and other information will be made there. Check out that webpage for the latest version of things.

Data Set Description

Data set contains 45 Distilleries.

Distillery Name of the Distillery
County County / Area where distillery is located
Address Full address of the distillery
EIRCODE EirCode for distillery in Ireland. Distilleries in Northern Ireland will not have an EIRCODE
NI_Postcode Post code of distilleries located in Northern Ireland
Tours Does the distillery offer tours to visitors (Yes/No)
Web_Site Web site address
Twitter The twitter name of the distillery
Lat Latitude for the distillery
Long Longitude for the distillery
Notes_Parent_Company Contains other descriptive information about the distillery, founded by, parent company, etc.

Data Set (scroll able region)

Data set contains 45 Distilleries.

Ballykeefe Distillery Kilkenny Kyle, Ballykeefe, Cuffsgrange, County Kilkenny, R95 NR50, Ireland R95 NR50 Yes  @BallykeefeD 52.602034 -7.375774 Ging Family
Belfast Distillery Antrim Crumlin Road Goal, Crumlin Road, Belfast, BT14 6ST, United Kingdom BT14 6ST No  @BDCIreland 54.609718 -5.941994 J&J McConnell
Blacks Distillery Cork Farm Lane, Kinsale, Co. Cork P17 XW70 No  @BlacksBrewery 51.710969 -8.515579
Blackwater Waterford Church Road, Ballinlevane East, Ballyduff, Co. Waterford, P51 C5C6 P51 C5C6 No  @BlackDistillery 52.147581 -8.052973
Boann Louth Lagavooren, Platin Rd., Drogheda, Co. Louth, A92 X593 A92 X593 Yes  @Boanndistillery 53.69459 -6.366558 Cooney Family
Bow Street Dublin Bow St, Smithfield Village, Dublin 7 D07 N9VH Yes  @jamesonireland 53.348415 -6.277266 Pernod Ricard
Bushmills Distillery Antrim 2 Distillery Rd, Bushmills BT57 8XH, United Kingdom BT57 8XH Yes  @BushmillsGlobal 55.202936 -6.517221
Cape Clear Cork Cape Clear Island, Knockannamaurnagh, Skibbereen, Co. Cork P81 RX70 No  @capedistillery 51.4509 -9.483047
Clonakilty Cork The Waterfront, Clonakilty, Co. Cork P85 EW82 Yes  @clondistillery 51.62165 -8.8855 Scully Family
Connacht Whiskey Distillery Mayo Belleek, Ballina, Co Mayo, F26 P932 F26 P932 Yes  @connachtwhiskey 54.122131 -9.143779
Cooley Distillery Louth Dundalk Rd, Maddox Garden, Carlingford, Dundalk, Co. Louth A91 FX98 Yes 53.996544 -6.221563 Beam Suntory
Copeland Distillery Down 43 Manor Street, Donaghadee, Co Down, Northern Ireland, BT21 0HG BT21 0HG Yes @CopelandDistill 54.642699 -5.532739
Dingle Distillery Kerry Farranredmond, DIngle, Co. Kerry V92 E7YD Yes  @DingleWhiskey 52.141928 -10.289287
Dublin Liberties Dublin 33 Mill Street, Dublin 8, D08 V221 D08 V221 Yes  @WeAreTheDLD 53.337343 -6.276367
Echlinville Distillery Down 62 Gransha Rd, Kircubbin, Newtownards BT22 1AJ, United Kingdom BT22 1AJ Yes  @Echlinville 54.46909 -5.509397
Glendalough Wicklow Unit 9 Newtown Business And Enterprise Centre, Newtown Mount Kennedy, Co. Wicklow, A63 A439 A63 A439 No  @GlendaloughDist 53.085011 -6.1074016 Mark Anthony Brands International
Great Northern Distillery Louth Carrickmacross Road, Dundalk, Co. Louth, Ireland, A91 P8W9 A91 P8W9 No  @GNDistillery 54.001574 -6.40964 Teeling Family, formally of Cooley Distillery
Hinch Distillery Down 19 Carryduff Road, Boardmills, Ballynahinch, Down, United Kingdom BT27 6TZ No  @hinchdistillery 54.461021 -5.903713
Kilbeggan Distillery Westmeath Lower Main St, Aghamore, Kilbeggan, Co. Westmeath, Ireland N91 W67N Yes  @Kilbeggan 53.369369 -7.502809 Beam Suntory
Kinahan’s Distillery Dublin 44 Fitzwilliam Place, Dublin D02 P027 No @KinahansLL Sources Whiskey from around ireland
Lough Gill Sligo Hazelwood Avenue, Cams, Co. Sligo F91 Y820 F91 Y820 Yes  @athruwhiskey 54.255318 -8.433156
Lough Mask Mayo Drioglann Loch Measc Teo, Killateeaun, Tourmakeady, Co. Mayo F12 PK75 Yes  @lough_mask 53.611819 -9.444077 David Raethorne
Lough Ree Longford Main Street, Lanesborough, Co. Longford N39 P229 No  @LoughReeDistill 53.673328 -7.99043
Matt D’Arcy Down 27 St Marys St, Newry BT34 2AA, United Kingdom BT34 2AA No  @mattdarcys 54.172817 -6.339367
Midleton Distillery Cork Old Midleton Distillery, Distillery Walk, Midleton, Co. Cork.  P25 Y394 P25 Y394 Yes  @jamesonireland 51.916344 -8.165174 Pernod Ricard
Nephin Mayo Nephin Whiskey Company, Nephin Square, Lahardane, Co. Mayo F26 W2H9 No  @NephinWhiskey 54.029011 -9.32211
Pearse Lyons Distillery Dublin 121-122 James’s Street Dublin 8, D08 ET27 D08 ET27 Yes  @PLDistillery 53.343708 -6.289351
Powerscourt Wicklow Powerscourt Estate, Enniskerry, Co. Wicklow, A98 A9T7 A98 A9T7 Yes  @PowerscourtDist 53.184167 -6.190794
Rademon Estate Distillery Down Rademon Estate Distillery, Downpatrick, County Down, United Kingdom BT30 9HR Yes  @RademonEstate 54.396039 -5.790968
Roe & Co Dublin 92 James’s Street, Dublin 8 D08 YYW9 Yes 53.343731 -6.285673
Royal Oak Distillery Carlow Clorusk Lower, Royaloak, Co. Carlow R21 KR23 Yes  @royaloakwhiskey 52.703341 -6.978711 Saronno
Scotts Irish Distillery Fermanagh Main Street, Garrison, Co Fermanagh, BT93 4ER, United Kingdom BT93 4ER No 54.417726 -8.083534
Skellig Six 18 Distillery Kerry Valentia Rd, Garranearagh, Cahersiveen, Co. Kerry, V23 YD89 V23 YD89 Yes  @SkelligSix18 51.935701 -10.239549
Slane Castle Distillery Meath Slane Castle, Slane, Co. Meath C15 F224 Yes  @slanewhiskey 53.711065 -6.562735 Brown-Forman & Conyngham Family
Sliabh Liag Donegal Line Road, Carrick, Co Donegal, F94 X9DX F94 X9DX Yes  @sliabhliagdistl 54.6545 -8.633847
Teeling Whiskey Distillery Dublin 13-17 Newmarket, The Liberties, Dublin 8, D08 KD91 D08 KD91 Yes  @TeelingWhiskey 53.337862 -6.277123 Teeling Family
The Quiet Man Derry 10 Rossdowney Rd, Londonderry BT47 6NS, United Kingdom BT47 6NS No  @quietmanwhiskey 54.995344 -7.301312 Niche Drinks
The Shed Distillery Leitrim Carrick on shannon Road, Drumshanbo, Co. Leitrim N41 R6D7 No  @SHEDDISTILLERY 54.047145 -8.04358
Thomond Gate Distillery Limerick No @ThomondW Nicholas Ryan
Tipperary Tipperary Newtownadam, Cahir, Co. Tipperary No  @TippDistillery 52.358622 -7.881875
Tullamore Distillery Offaly Bury Quay, Tullamore, Co. Offaly R35 XW13 Yes  @TullamoreDEW 53.377774 -7.492944
Walsh Whiskey Distillery Carlow Equity House, Deerpark Business Park, Dublin Rd, Carlow R93 K7W4 No  @walshwhiskey 52.853417 -6.883916 Walsh Family
Waterford Distillery Waterford 9 Mary Street, Grattan Quay, Waterford City, Co. Waterford X91 KF51 No  @waterforddram 52.264308 -7.120997 Renegade Spirits Ireland Ltd
Wayward Irish Distillery Kerry Lakeview House & Estate, Fossa Road, Maulagh, Killarney, Co. Kerry, V93 F7Y5 V93 F7Y5 No  @wayward_irish 52.071045 -9.590709 O’Connell Fomily
West Cork Distillers Cork Marsh Rd, Marsh, Skibbereen, Co. Cork P81 YY31 No  @WestCorkDistill 51.557804 -9.268941

Download Data Set

Irish_Whiskey_Distilleries – Excel Spreadsheet

Irish_Whiskey_Distilleries.csv – Zipped CSV file

I’ll be adding some additional formats soon.

Map of Distilleries

Here is a map with the Distilleries plotted using Google Maps.

Screenshot 2020-02-13 15.22.40

Twitter Lists & Twitter Hash Tags

I’ve created a Twitter list containing the twitter accounts for all of these distilleries. You can subscribe to the list to get all the latest posts from these distilleries

Irish Whishkey Distillery Twitter List

Have a look out for these twitter hash tags on a Friday, Saturday or Sunday night, as people from around the world share what whiskeys they are tasting that evening. Irish and Scotish Whiskies are the most common.


How to send me updates, corrections and details of Distilleries I’ve missed

Let me know, via the my Contact page,  if you see any errors in the data set, especially if I’m missing any distilleries.

Data Science (The MIT Press Essential Knowledge series) – available in English, Korean and Chinese

Posted on Updated on

Back in the middle of 2018 MIT Press published my Data Science book, co-written with John Kelleher. It book was published as part of their Essentials Series.

During the few months it was available in 2018 it became a best seller on Amazon, and one of the top best selling books for MIT Press. This happened again in 2019. Yes, two years running it has been a best seller!

2020 kicks off with the book being translated into Korean and Chinese. Here are the covers of these translated books.

The Japanese and Turkish translations will be available in a few months!

Go get the English version of the book on Amazon in print, Kindle and Audio formats.

This book gives a concise introduction to the emerging field of data science, explaining its evolution, relation to machine learning, current uses, data infrastructure issues and ethical challenge the goal of data science is to improve decision making through the analysis of data. Today data science determines the ads we see online, the books and movies that are recommended to us online, which emails are filtered into our spam folders, even how much we pay for health insurance.

Go check it out.

Screenshot 2020-02-05 11.46.03

Scottish Whisky Data Set – Updated

Posted on Updated on

The Scottish Whiskey data set consist of tasting notes and evaluations from 86 distilleries around Scotland. This data set has been around a long time andwas a promotional site for a book, Whisky Classified: Choosing Single Malts by Flavour. Written by David Wishart of the University of Saint Andrews, the book had its most recent printing in February 2012.

I’ve been using this data set in one of my conference presentations (Planning my Summer Vacation), but to use this data set I need to add 2 new attributes/features to the data set. Each of the attributes are listed below and the last 2 are the attributes I added. These were added to include the converted LAT and LONG comparable with Google Maps and other similar mapping technology.

Attributes include:

  • RowID
  • Distillery
  • Body
  • Sweetness
  • Smoky
  • Medicinal
  • Tobacco
  • Honey
  • Spicy
  • Winey
  • Nutty,
  • Malty,
  • Fruity,
  • Floral,
  • Postcode,
  • Latitude,
  • Longitude
  • lat  — newly added
  • long  — newly added

Here is the link to download and use this updated Scottish Whisky data set.

The original website is no longer available but if you have a look at the Internet Archive you will find the website.

Screenshot 2020-01-23 14.44.53

#GE2020 Comparing Party Manifestos to 2016

Posted on

A few days ago I wrote a blog post about using Python to analyze the 2016 general (government) elections manifestos of the four main political parties in Ireland.

Today the two (traditional) largest parties released their #GE2020 manifestos. You can get them by following these links

The following images show the WordClouds generated for the #GE2020 Manifestos. I used the same Python code used in my previous post. If you want to try this out yourself, all the Python code is there.

First let us look at the WordClouds from Fine Gael.

2020 Manifesto
2016 Manifesto

Now for the Fianna Fail WordClouds.

2020 Manifesto
2016 Manifesto

When you look closely at the differences between the manifestos you will notice there are some common themes across the manifestos from 2016 to those in the 2020 manifestos. It is also interesting to see some new words appearing/disappearing for the 2020 manifestos. Some of these are a little surprising and interesting.

#GE2020 Analysing Party Manifestos using Python

Posted on

The general election is underway here in Ireland with polling day set for Saturday 8th February. All the politicians are out campaigning and every day the various parties are looking for publicity on whatever the popular topic is for that day. Each day is it a different topic.

Most of the political parties have not released their manifestos for the #GE2020 election (as of date of this post). I want to use some simple Python code to perform some analyse of their manifestos. As their new manifestos weren’t available (yet) I went looking for their manifestos from the previous general election. Michael Pidgeon has a website with party manifestos dating back to the early 1970s, and also has some from earlier elections. Check out his website.

I decided to look at manifestos from the 4 main political parties from the 2016 general election. Yes there are other manifestos available, and you can use the Python code, given below to analyse those, with only some minor edits required.

The end result of this simple analyse is a WordCloud showing the most commonly used words in their manifestos. This is graphical way to see what some of the main themes and emphasis are for each party, and also allows us to see some commonality between the parties.

Let’s begin with the Python code.

1 – Initial Setup

There are a number of Python Libraries available for processing PDF files. Not all of them worked on all of the Part Manifestos PDFs! It kind of depends on how these files were generated. In my case I used the pdfminer library, as it worked with all four manifestos. The common library PyPDF2 didn’t work with the Fine Gael manifesto document.

import io
import pdfminer
from pprint import pprint
from pdfminer.converter import TextConverter
from pdfminer.pdfinterp import PDFPageInterpreter
from pdfminer.pdfinterp import PDFResourceManager
from pdfminer.pdfpage import PDFPage

#directory were manifestos are located
wkDir = '.../General_Election_Ire/'

#define the names of the Manifesto PDF files & setup party flag
pdfFile = wkDir+'FGManifesto16_2.pdf'
party = 'FG'
#pdfFile = wkDir+'Fianna_Fail_GE_2016.pdf'
#party = 'FF'
#pdfFile = wkDir+'Labour_GE_2016.pdf'
#party = 'LB'
#pdfFile = wkDir+'Sinn_Fein_GE_2016.pdf'
#party = 'SF'

All of the following code will run for a given manifesto. Just comment in or out the manifesto you are interested in. The WordClouds for each are given below.

2 – Load the PDF File into Python

The following code loops through each page in the PDF file and extracts the text from that page.

I added some addition code to ignore pages containing the Irish Language. The Sinn Fein Manifesto contained a number of pages which were the Irish equivalent of the preceding pages in English. I didn’t want to have a mixture of languages in the final output.

SF_IrishPages = [14,15,16,17,18,19,20,21,22,23,24]
text = ""

pageCounter = 0
resource_manager = PDFResourceManager()
fake_file_handle = io.StringIO()
converter = TextConverter(resource_manager, fake_file_handle)
page_interpreter = PDFPageInterpreter(resource_manager, converter)

for page in PDFPage.get_pages(open(pdfFile,'rb'), caching=True, check_extractable=True):
    if (party == 'SF') and (pageCounter in SF_IrishPages):
        print(party+' - Not extracting page - Irish page', pageCounter)
        print(party+' - Extracting Page text', pageCounter)

        text = fake_file_handle.getvalue()

    pageCounter += 1

print('Finished processing PDF document')
FG - Extracting Page text 0
FG - Extracting Page text 1
FG - Extracting Page text 2
FG - Extracting Page text 3
FG - Extracting Page text 4
FG - Extracting Page text 5

3 – Tokenize the Words

The next step is to Tokenize the text. This breaks the text into individual words.

from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
tokens = []

tokens = word_tokenize(text)

print('Number of Pages =', pageCounter)
print('Number of Tokens =',len(tokens))
Number of Pages = 140
Number of Tokens = 66975

4 – Filter words, Remove Numbers & Punctuation

There will be a lot of things in the text that we don’t want included in the analyse. We want the text to only contain words. The following extracts the words and ignores numbers, punctuation, etc.

#converts to lower case, and removes punctuation and numbers
wordsFiltered = [tokens.lower() for tokens in tokens if tokens.isalpha()]
['fine', 'gael', 'general', 'election', 'manifesto', 's', 'keep', 'the', 'recovery', 'going', 'gaelgeneral', 'election', 'manifesto', 'foreward', 'from', 'an', 'taoiseach', 'the', 'long', 'term', 'economic', 'three', 'steps', 'to', 'keep', 'the', 'recovery', 'going', 'agriculture', 'and', 'food', 'generational',

As you can see the number of tokens has reduced from 66,975 to 58,198.

5 – Setup Stop Words

Stop words are general words in a language that doesn’t contain any meanings and these can be removed from the data set. Python NLTK comes with a set of stop words defined for most languages.

#We initialize the stopwords variable which is a list of words like 
#"The", "I", "and", etc. that don't hold much value as keywords
stop_words = stopwords.words('english')
['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've", "you'll", "you'd", 'your', 'yours', 'yourself',

Additional stop words can be added to this list. I added the words listed below. Some of these you might expect to be in the stop word list, others are to remove certain words that appeared in the various manifestos that don’t have a lot of meaning. I also added the name of the parties  and some Irish words to the stop words list.

#some extra stop words are needed after examining the data and word cloud
#these are added
extra_stop_words = ['ireland','irish','ł','need', 'also', 'set', 'within', 'use', 'order', 'would', 'year', 'per', 'time', 'place', 'must', 'years', 'much', 'take','make','making','manifesto','ð','u','part','needs','next','keep','election', 'fine','gael', 'gaelgeneral', 'fianna', 'fáil','fail','labour', 'sinn', 'fein','féin','atá','go','le','ar','agus','na','ár','ag','haghaidh','téarnamh','bplean','page','two','number','cothromfor']

Now remove these stop words from the list of tokens.

# remove stop words from tokenised data set
filtered_words = [word for word in wordsFiltered if word not in stop_words]
['general', 'recovery', 'going', 'foreward', 'taoiseach', 'long', 'term', 'economic', 'three', 'steps', 'recovery', 'going', 'agriculture', 'food',

The number of tokens is reduced to 31,038

6 – Word Frequency Counts

Now calculate how frequently these words occur in the list of tokens.

#get the frequency of each word
from collections import Counter

# count frequencies
cnt = Counter()
for word in filtered_words:
cnt[word] += 1

Counter({'new': 340, 'support': 249, 'work': 190, 'public': 186, 'government': 177, 'ensure': 177, 'plan': 176, 'continue': 168, 'local': 150, 

7 – WordCloud

We can use the word frequency counts to add emphasis to the WordCloud. The more frequently it occurs the larger it will appear in the WordCloud.

#create a word cloud using frequencies for emphasis 
from wordcloud import WordCloud
import matplotlib.pyplot as plt

wc = WordCloud(max_words=100, margin=9, background_color='white',
scale=3, relative_scaling = 0.5, width=500, height=400,


#Save the image in the img folder:

The last line of code saves the WordCloud image as a file in the directory where the manifestos are located.

8 – WordClouds for Each Party

Screenshot 2020-01-21 11.10.25

Remember these WordClouds are for the manifestos from the 2016 general election.

When the parties have released their manifestos for the 2020 general election, I’ll run them through this code and produce the WordClouds for 2020. It will be interesting to see the differences between the 2016 and 2020 manifesto WordClouds.

Data Profiling in Python

Posted on Updated on

With every data analytics and data science project, one of the first tasks to that everyone needs to do is to profile the data sets. Data profiling allows you to get an initial picture of the data set, see data distributions and relationships. Additionally it allows us to see what kind of data cleaning and data transformations are necessary.

Most data analytics tools and languages have some functionality available to help you. Particular the various data science/machine learning products have this functionality built-in them and can do a lot of the data profiling automatically for you. But if you don’t use these tools/products, then you are probably using R and/or Python to profile your data.

With Python you will be working with the data set loaded into a Pandas data frame. From there you will be using various statistical functions and graphing functions (and libraries) to create a data profile. From there you will probably create a data profile report.

But one of the challenges with doing this in Python is having different coding for handling numeric and character based attributes/features. The describe function in Python (similar to the summary function in R) gives some statistical summaries for numeric attributes/features. A different set of functions are needed for character based attributes. The Python Library repository ( contains over 200K projects. But which ones are really useful and will help with your data science projects. Especially with new projects and libraries being released on a continual basis? This is a major challenge to know what is new and useful.

For example the followings shows loading the titanic data set into a Pandas data frame, creating a subset and using the describe function in Python.

import pandas as pd

df = pd.read_csv("/Users/brendan.tierney/Dropbox/4-Datasets/titanic/train.csv")


Screenshot 2019-11-22 16.58.39

df2 = df.iloc[:,[1,2,4,5,6,7,8,10,11]]

Screenshot 2019-11-22 16.59.30


Screenshot 2019-11-22 17.00.17

You will notice the describe function has only looked at the numeric attributes.

One of those 200+k Python libraries is one called pandas_profiling. This will create a data audit report for both numeric and character based attributes. This most be good, Right?  Let’s take a look at what it does.

For each column the following statistics – if relevant for the column type – are presented in an interactive HTML report:

  • Essentials: type, unique values, missing values
  • Quantile statistics like minimum value, Q1, median, Q3, maximum, range, interquartile range
  • Descriptive statistics like mean, mode, standard deviation, sum, median absolute deviation, coefficient of variation, kurtosis, skewness
  • Most frequent values
  • Histogram
  • Correlations highlighting of highly correlated variables, Spearman, Pearson and Kendall matrices
  • Missing values matrix, count, heatmap and dendrogram of missing values

The first step is to install the pandas_profiling library.

pip3 install pandas_profiling

Now run the pandas_profiling report for same data frame created and used, see above.

import pandas_profiling as pp


The following images show screen shots of each part of the report. Click and zoom into these to see more details.

Screenshot 2019-11-22 17.29.00Screenshot 2019-11-22 17.29.46

Screenshot 2019-11-22 17.30.57Screenshot 2019-11-22 17.31.32

Screenshot 2019-11-22 17.31.57Screenshot 2019-11-22 17.32.31

Screenshot 2019-11-22 17.33.02


Demographics vs Psychographics for Machine Learning

Posted on Updated on

When preparing data for data science, data mining or machine learning projects you will create a data set that describes the various characteristics of the subject or case record. Each attribute will contain some descriptive information about the subject and is related to the target variable in some way.

In addition to these attributes, the data set will be enriched with various other internal/external data to complete the data set.

Some of the attributes in the data set can be grouped under the heading of Demographics. Demographic data contains attributes that explain or describe the person or event each case record is focused on. For example, if the subject of the case record is based on Customer data, this is the “Who” the demographic data (and features/attributes) will be about. Examples of demographic data include:

  • Age range
  • Marital status
  • Number of children
  • Household income
  • Occupation
  • Educational level

These features/attributes are typically readily available within your data sources and if they aren’t then these name be available from a purchased data set.

Additional feature engineering methods are used to generate new features/attributes that express meaning is different ways. This can be done by combining features in different ways, binning, dimensionality reduction, discretization, various data transformations, etc. The list can go on.

The aim of all of this is to enrich the data set to include more descriptive data about the subject. This enriched data set will then be used by the machine learning algorithms to find the hidden patterns in the data. The richer and descriptive the data set is the greater the likelihood of the algorithms in detecting the various relationships between the features and their values. These relationships will then be included in the created/generated model.

Another approach to consider when creating and enriching your data set is move beyond the descriptive features typically associated with Demographic data, to include Pyschographic data.

Psychographic data is a variation on demographic data where the feature are about describing the habits of the subject or customer.  Demographics focus on the “who” while psycographics focus on the “why”. For example, a common problem with data sets is that they describe subjects/people who have things in common. In such scenarios we want to understand them at a deeper level. Psycographics allows us to do this. Examples of Psycographics include:

  • Lifestyle activities
  • Evening activities
  • Purchasing interests – quality over economy,  how environmentally concerned are you
  • How happy are you with work, family, etc
  • Social activities and changes in these
  • What attitudes you have for certain topic areas
  • What are your principles and beliefs

The above gives a far deeper insight into the subject/person and helps to differentiate each subject/person from each other, when there is a high similarity between all subjects in the data set. For example, demographic information might tell you something about a person’s age, but psychographic information will tell you that the person is just starting a family and is in the market for baby products.

I’ll close with this. Consider the various types of data gathering that companies like Google, Facebook, etc perform. They gather lots of different types of data about individuals. This allows them to build up a complete and extensive profile of all activities for individuals. They can use this to deliver more accurate marketing and advertising. For example, Google gathers data about what places to visit throughout a data, they gather all your search results, and lots of other activities. They can do a lot with this data. but now they own Fitbit. Think about what they can do with that data and particularly when combined with all the other data they have about you. What if they had access to your medical records too!  Go Google this ! You will find articles about them now having access to your health records. Again combine all of the data from these different data sources. How valuable is that data?


Managing imbalanced Data Sets with SMOTE in Python

Posted on Updated on

When working with data sets for machine learning, lots of these data sets and examples we see have approximately the same number of case records for each of the possible predicted values. In this kind of scenario we are trying to perform some kind of classification, where the machine learning model looks to build a model based on the input data set against a target variable. It is this target variable that contains the value to be predicted. In most cases this target variable (or feature) will contain binary values or equivalent in categorical form such as Yes and No, or A and B, etc or may contain a small number of other possible values (e.g. A, B, C, D).

For the classification algorithm to perform optimally and be able to predict the possible value for a new case record, it will need to see enough case records for each of the possible values. What this means, it would be good to have approximately the same number of records for each value (there are many ways to overcome this and these are outside the score of this post). But most data sets, and those that you will encounter in real life work scenarios, are never balanced, as in having a 50-50 split. What we typically encounter might be a 90-10, 98-2, etc type of split. These data sets are said to be imbalanced.

Screenshot 2019-05-20 15.34.14

The image above gives examples of two approaches for creating a balanced data set. The first is under-sampling. This involves reducing the class that contains the majority of the case records and reducing it to match the number of case records in the minor class. The problems with this include, the resulting data set is too small to be meaningful, the case records removed could contain important records and scenarios that the model will need to know about.

The second example is creating a balanced data set by increasing the number of records in the minority class. There are a few approaches to creating this. The first approach is to create duplicate records, from the minor class, until such time as the number of case records are approximately the same for each class. This is the simplest approach. The second approach is to create synthetic records that are statistically equivalent of the original data set. A commonly technique used for this is called SMOTE, Synthetic Minority Oversampling Technique. SMOTE uses a nearest neighbors algorithm to generate new and synthetic data we can use for training our model. But one of the issues with SMOTE is that it will not create sample records outside the bounds of the original data set. As you can image this would be very difficult to do.

The following examples will illustrate how to perform Under-Sampling and Over-Sampling (duplication and using SMOTE) in Python using functions from Pandas, Imbalanced-Learn and Sci-Kit Learn libraries.

NOTE: The Imbalanced-Learn library (e.g. SMOTE)requires the data to be in numeric format, as it statistical calculations are performed on these. The python function get_dummies was used as a quick and simple to generate the numeric values. Although this is perhaps not the best method to use in a real project. With the other sampling functions can process data sets with a sting and numeric.

Data Set:  Is the Portuaguese Banking data set and is available on the UCI Data Set Repository, and many other sites. Here are some basics with that data set.

import warnings

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
get_ipython().magic('matplotlib inline')

bank_file = ".../bank-additional-full.csv"

# import dataset
df = pd.read_csv(bank_file, sep=';',)

# get basic details of df (num records, num features)
df['y'].value_counts() # dataset is imbalanced with majority of class label as "no".
no     36548
yes     4640
Name: y, dtype: int64
#print bar chart
df.y.value_counts().plot(kind='bar', title='Count (target)');

Screenshot 2019-05-27 09.38.36

Example 1a – Down/Under sampling the majority class y=1 (using random sampling)

count_class_0, count_class_1 = df.y.value_counts()

# Divide by class
df_class_0 = df[df['y'] == 0] #majority class
df_class_1 = df[df['y'] == 1] #minority class

# Sample Majority class (y=0, to have same number of records as minority calls (y=1)
df_class_0_under = df_class_0.sample(count_class_1)
# join the dataframes containing y=1 and y=0
df_test_under = pd.concat([df_class_0_under, df_class_1])

print('Random under-sampling:')
print("Num records = ", df_test_under.shape[0])

df_test_under.y.value_counts().plot(kind='bar', title='Count (target)');
Random under-sampling:
1    4640
0    4640
Name: y, dtype: int64
Num records =  9280

Screenshot 2019-05-27 09.41.06

Example 1b – Down/Under sampling the majority class y=1 using imblearn

from imblearn.under_sampling import RandomUnderSampler

X = df_new.drop('y', axis=1)
Y = df_new['y']

rus = RandomUnderSampler(random_state=42, replacement=True)
X_rus, Y_rus = rus.fit_resample(X, Y)

df_rus = pd.concat([pd.DataFrame(X_rus), pd.DataFrame(Y_rus, columns=['y'])], axis=1)

print('imblearn over-sampling:')
print("Num records = ", df_rus.shape[0])

df_rus.y.value_counts().plot(kind='bar', title='Count (target)');

[same results as Example 1a]

Example 1c – Down/Under sampling the majority class y=1 using Sci-Kit Learn

from sklearn.utils import resample

print("Original Data distribution")

# Down Sample Majority class
down_sample = resample(df[df['y']==0],
replace = True, # sample with replacement
n_samples = df[df['y']==1].shape[0], # to match minority class
random_state=42) # reproducible results

# Combine majority class with upsampled minority class
train_downsample = pd.concat([df[df['y']==1], down_sample])

# Display new class counts
print('Sci-Kit Learn : resample : Down Sampled data set')
print("Num records = ", train_downsample.shape[0])
train_downsample.y.value_counts().plot(kind='bar', title='Count (target)');

[same results as Example 1a]

Example 2 a – Over sampling the minority call y=0 (using random sampling)

df_class_1_over = df_class_1.sample(count_class_0, replace=True)
df_test_over = pd.concat([df_class_0, df_class_1_over], axis=0)

print('Random over-sampling:')

df_test_over.y.value_counts().plot(kind='bar', title='Count (target)');
Random over-sampling:
1    36548
0    36548
Name: y, dtype: int64

Screenshot 2019-05-27 09.46.08

Example 2b – Over sampling the minority call y=0 using SMOTE

from imblearn.over_sampling import SMOTE

X = df_new.drop('y', axis=1)
Y = df_new['y']

sm = SMOTE(random_state=42)
X_res, Y_res = sm.fit_resample(X, Y)

df_smote_over = pd.concat([pd.DataFrame(X_res), pd.DataFrame(Y_res, columns=['y'])], axis=1)

print('SMOTE over-sampling:')

df_smote_over.y.value_counts().plot(kind='bar', title='Count (target)');

[same results as Example 2a]

Example 2c – Over sampling the minority call y=0 using Sci-Kit Learn

from sklearn.utils import resample

print("Original Data distribution")

# Upsample minority class
train_positive_upsample = resample(df[df['y']==1],
replace = True, # sample with replacement
n_samples = train_zero.shape[0], # to match majority class
random_state=42) # reproducible results

# Combine majority class with upsampled minority class
train_upsample = pd.concat([train_negative, train_positive_upsample])

# Display new class counts
print('Sci-Kit Learn : resample : Up Sampled data set')
train_upsample.y.value_counts().plot(kind='bar', title='Count (target)');

[same results as Example 2a]

Examples of using Machine Learning on Video and Photo in Public

Posted on Updated on

Over the past 18 months or so most of the examples of using machine learning have been on looking at images and identifying objects in them. There are the typical examples of examining pictures looking for a Cat or a Dog, or some famous person, etc. Most of these examples are very noddy, although they do illustrate important examples.

But what if this same technology was used to monitor people going about their daily lives. What if pictures and/or video was captured of you as you walked down the street or on your way to work or to a meeting. These pictures and videos are being taken of you without you knowing.

And this raises a wide range of Ethical concerns. There are the ethics of deploying such solutions in the public domain, but there are also ethical concerns for the data scientists, machine learner, and other people working on these projects. “Just because we can, doesn’t mean we should”. People need to decide, if they are working on one of these projects, if they should be working on it and if not what they can do.

Ethics are the principals of behavior based on ideas of right and wrong. Ethical principles often focus on ideas such as fairness, respect, responsibility, integrity, quality, transparency and trust.  There is a lot in that statement on Ethics, but we all need to consider that is right and what is wrong. But instead of wrong, what is grey-ish, borderline scenarios.

Here are some examples that might fall into the grey-ish space between right and wrong. Why they might fall more towards the wrong is because most people are not aware their image is being captured and used, not just for a particular purpose at capture time, but longer term to allow for better machine learning models to be built.

Can you imagine walking down the street with a digital display in front of you. That display is monitoring you, and others, and then presents personalized adverts on the digital display aim specifically at you. A classify example of this is in the film Minority Report. This is no longer science fiction.

Screenshot 2019-05-10 14.12.55

This is happening at the Westfield shopping center in London and in other cities across UK and Europe. These digital advertisement screens are monitoring people, identifying their personal characteristics and then customizing the adverts to match in with the profile of the people walking past. This solutions has been developed and rolled out by Ocean Out Door. They are using machine learning to profile the individual people based on gender, age, facial hair, eye wear, mood, engagement, attention time, group size, etc. They then use this information to:

  1. Optimisation – delivering the appropriate creative to the right audience at the right time.
  2. Visualise – Gaze recognition to trigger creative or an interactive experience
  3. AR Enabled – Using the HD cameras to create an augmented reality mirror or window effect, creating deep consumer engagement via the latest technology
  4. Analytics – Understanding your brand’s audience, post campaign analysis and creative testing

Screenshot 2019-05-10 14.19.35.png

Face Plus Plus can monitor people walking down the street and do similar profiling, and can bring it to another level where by they can identify what clothing you are wearing and what the brand is. Image if you combine this with location based services. An example of this, imagine you are walking down the high street or a major retail district. People approach you trying to entice you into going into a particular store, and they offer certain discounts. But you are with a friend and the store is not interested in them.

Screenshot 2019-05-10 14.28.23

The store is using video monitoring, capturing details of every person walking down the street and are about to pass the store. The video is using machine/deep learning to analyze you profile and what brands you are wearing. The store as a team of people who are deployed to stop and engage with certain individuals, just because they make the brands or interests of the store and depending on what brands you are wearing can offer customized discounts and offers to you.

How comfortable would you be with this? How comfortable would you be about going shopping now?

For me, I would not like this at all, but I can understand why store and retail outlets are interested, as they are all working in a very competitive market trying to maximize every dollar or euro they can get.

Along side the ethical concerns, we also have some legal aspects to consider. Some of these are a bit in the grey-ish area, as some aspects of these kind of scenarios are slightly addresses by EU GDPR and the EU Artificial Intelligence guidelines. But what about other countries around the World. Then it comes to training and deploying these facial models, they are dependent on having a good training data set. This means they needs lots and lots of pictures of people and these pictures need to be labelled with descriptive information about the person. For these public deployments of facial recognition systems, then will need more and more training samples/pictures. This will allow the models to improve and evolve over time. But how will these applications get these new pictures? They claim they don’t keep any of the images of people. They only take the picture, use the model on it, and then perform some action. They claim they do not keep the images! But how can they improve and evolve their solution?

I’ll have another blog post giving more examples of how machine/deep learning, video and image captures are being used to monitor people going about their daily lives.


Machine Learning Tools and Workbenches

Posted on Updated on

The following is a list of the most commonly used tools and workbenches for machine learning. These are specific to machine learning only. This list does not include any library or frameworks. These are tools and workbenches only. Most offering machine learning tools will include the following features:

  • Easy drag and drop capabilities
  • Data collection
  • Data preparation and cleaning
  • Model building
  • Data Visualization
  • Model Deployment
  • Integration with other tools and languages

As more and more organizations implement machine learning, there are two core aims they want to achieve.

  1. Employee Productivity: Who wants to spend days or weeks writing mundane code to load data, clean data, etc etc etc. No one wants to do this and especially employers don’t want their staff wasting time on this. Instead they are happy to invest in tools and workbenches where a lot or most or all of these mundane tasks are automated for you. You can not concentrate on the important tasks of adding value to your organisation. This saves money, improves employee productivity and employee value.
  2. Integration with Technical Architecture: Many of these tools and workbenches allow for easy integration with the technical architecture and thereby allowing easy and quick integration of machine learning withe the day to day activities of the organization. This saves money, improves employee productivity and employee value.


SAS software has been around for every and is the great grand-daddy of analytics and machine learning. They have built a large number of machine learning tools and solutions built upon these for various industries. Their core machine learning tools include SAS Enterprise Miner and SAS Visual Data Mining and Machine Learning.


Microsoft have been improving their Machine Learning offering over the years and most of this is based on the Azure cloud platform with Microsoft Azure Machine Learning Studio and Azure Databricks.


SAP Leonardo is a cloud based platform for machine learning and supports tight integration with other SAP software.


Oracle have a number of machine learning tools and supports for the main machine learning languages. They have built a large number of applications (both cloud and on-premises) with in-built machine learning. Their main tools for machine learning include Oracle Data Miner, Oracle Machine Learning and Oracle Analytics (OAC or DVD versions)


If you work with hadoop and big data then you are probably using Cloudera in some way. Cloudera have hired Hilary Mason as their GM of ML. By taking an “AI factory” approach to turning data into decisions, you can make the process of building, scaling, and deploying enterprise ML and AI solutions automated, repeatable, and predictable—boring even. Cloudera Data Science Workbench is their solution.

Screenshot 2019-04-17 13.10.46


IBM have a number of machine learning tools, one of them being a long standing member of the machine learning community, SPSS Modeler. Other machine learning tools include Watson Studio, IBM Machine Learning for z/OS, and IBM Watson Explorer.


Google have a large number of machine learning solutions including everything from traditional machine learning, into NLP, in Image processing, Video processing, etc. It’s a long list. Many of these come with various APIs to access these features. Most of these revolve around their Google AI Cloud offering. But sticking with the tools and workbenches we have AI Platform Notebooks, Kubeflow, and BigQuery ML.


TensorBoard is a suite of tools for graphical representation of different aspects and stages of machine learning in TensorFlow.


A bit like Goolge, Amazon has a large number of solutions for machine learning and AI, and most of these are available via an API or some cloud service. Amazon SageMaker is their main service.


Looker connects directly with Google BQML reduces additional complexity for data scientists by eliminating the need to move outputs of predictive models back into the database for use, while also increases the time-to-value for business users, allowing them to operationalize the outputs of predictive metrics to make better decisions every day.


Weka has been around for a long time and still popular in some research groups. Weka is a collection of machine learning algorithms for data mining tasks. It contains tools for data preparation, classification, regression, clustering, association rules mining, and visualization.


RapidMiner Studio has been around for a long time and is one of the few more visual workflow tools (that everyone else should be doing).


From the people who created Spark, we have another notebook solution for your machine learning projects called Databricks Workbench.


KNIME Analytics Platform is the open source software for creating data science applications and services.


Dataiki Data Science (DSS) is a collaborative data science software workflow platform enabling data exploration, prototyping and delivery of analytical and machine learning solutions.


I’ve not included the tools like R Studio and Notebooks in this list as they don’t really address the aims listed above. But you will notice a lot of the above solutions are really Jupyter Notebooks. Most of these vendors have a long way to go to make the tasks of machine learning boring.

This list does not cover all available tools and workbenches, but it does list the most common one you will come across.

Data Sets for Analytics

Posted on Updated on

When working with analytics, in whatever flavor, one of the key things you need is some data. But data comes in many different shapes and sizes, but where can you get some useful data, be it transactional, time-series, meta-data, analytical, master, categorical, numeric, regression, clustering, etc.

Many of the popular analytics languages have some data sets built into them. For example the R language comes pre-loaded with data sets and these can be accessed using


but many of the R packages also come with data sets.

Similarly if you are using Python, it comes with some pre-loaded data sets and similarly many of the Python libraries have data sets build into them. For example scikit learn.

from sklearn import datasets

But where else can you get data sets. There are lots and lots of website available with data sets and the list could be very long. The following is a list of, what I consider, the websites with the best data sets.


Amazon Open Data

UCI Machine Learning Repository

Google Search Engine

Google Open Images Data

Google Fiance

Microsoft Open Data

Awesome Public Datasets Collection

EU Open Data

US Government Data

US Census Bureau

Ireland Open Data

Northern Ireland Public Open Data

UK Open Data

UK Data Services data sets

Image Processing Data

Carnegie Mellon University Data Sets

World Bank Open Data

IMF Open Data

Movie Reviews Data Set

Amazon Reviews

Amazon public data sets

IMDb Datasets

Github List of Public Data Sets

Computer Vision data sets

Boston Housing Data Set and from here

ODSC – 25 picks of open data sets

NHS Open Data Sets – including prescriptions issued in England


Time Series Forecasting in Oracle – Part 1

Posted on


Time-series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. In this blog post I’ll introduce what time-series analysis is, the different types of time-series analysis and introduce how you can do this using SQL and PL/SQL in Oracle Database. I’ll have additional blog posts giving more detailed examples of Oracle functions and how they can be used for different time-series data problems.

Time-series forecasting is the use of a model to predict future values based on previously observed/historical values. It is a form of regression analysis with additions to facilitate trends, seasonal effects and various other combinations.

Screenshot 2019-04-13 12.59.56

Time-series forecasting is not an exact science but instead consists of a set of statistical tools and techniques that support human judgment and intuition, and only forms part of a solution. It can be used to automate the monitoring and control of data flows and can then indicate certain trends, alerts, rescheduling, etc., as in most business scenarios it is used for predict some future customer demand and/or products or services needs.

Typical application areas of Time-series forecasting include:

  • Operations management: forecast of product sales; demand for services
  • Marketing: forecast of sales response to advertisement procedures, new promotions etc.
  • Finance & Risk management: forecast returns from investments
  • Economics: forecast of major economic variables, e.g. GDP, population growth, unemployment rates, inflation; useful for monetary & fiscal policy; budgeting plans & decisions
  • Industrial Process Control: forecasts of the quality characteristics of a production process
  • Demography: forecast of population; of demographic events (deaths, births, migration); useful for policy planning

When working with time-series data we are looking for a pattern or trend in the data. What we want to achieve is the find a way to model this pattern/trend and to then project this onto our data and into the future. The graphs in the following image illustrate examples of the different kinds of scenarios we want to model.

Most time-series data sets will have one or more of the following components:

  • Seasonal: Regularly occurring, systematic variation in a time series according to the time of year.
  • Trend: The tendency of a variable to grow over time, either positively or negatively.
  • Cycle: Cyclical patterns in a time series which are generally irregular in depth and duration. Such cycles often correspond to periods of economic expansion or contraction.  Also know as the business cycle. 
  • Irregular: The Unexplained variation in a time series.

When approaching time-series problems you will use a combination of visualizations and time-series forecasting methods to examine the data and to build a suitable model. This is where the skills and experience of the data scientist becomes very important.

Oracle provided a algorithm to support time-series analysis in Oracle 18c. This function is called Exponential Smoothing. This algorithm allows for a number of different types of time-series data and patterns, and provides a wide range of statistical measures to support the analysis and predictions, in a similar way to Holt-Winters.

Screenshot 2019-04-15 11.57.40

The first parameter for the Exponential Smoothing function is the name of the model to use. Oracle provides a comprehensive list of models and these are listed in the following table.

Screenshot 2019-04-15 11.57.40

Check out my other blog posts on performing time-series analysis using the Exponential Smoothing function in Oracle Database. These will give more detailed examples of how the Oracle time-series functions, using the Exponential Smoothing algorithm, can be used for different time-series data problems. I’ll also look at example of the different configurations.